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Abstract

A powerful approach, and one of the most common ones in structural health monitoring (SHM), is to use data-driven
models to make predictions and inferences about structures and their condition. Such methods almost exclusively rely
on the quality of the data. Within the SHM discipline, data do not always suffice to build models with satisfactory
accuracy for given tasks. Even worse, data may be completely missing from one’s dataset, regarding the behaviour of
a structure under different environmental conditions. In the current work, with a view to confronting such issues,
the generation of artificial data using a variation of the generative adversarial network (GAN) algorithm, is used.
The aforementioned variation is that of the conditional GAN or cGAN. The algorithm is not only used to generate
artificial data, but also to learn transformations of manifolds according to some known parameters. Assuming that
the structure’s response is represented by points in a manifold, part of the space will be formed due to variations in
external conditions affecting the structure. This idea proves efficient in SHM, as it is exploited to generate structural
data for specific values of environmental coefficients. The scheme is applied here on a simulated structure which
operates under different temperature and humidity conditions. The cGAN is trained on data for some discrete
values of the temperature within some range, and is able to generate data for every temperature in this range with
satisfactory accuracy. The novelty, compared to classic regression in similar problems, is that the cGAN allows
unknown environmental parameters to affect the structure and can generate whole manifolds of data for every value
of the known parameters, while the unknown ones vary within the generated manifolds.

Key words: Structural health monitoring (SHM), machine learning, conditional generative adversarial
networks (cGANs), environmental conditions, artificial data.

1 Introduction

Structures are an irremovable part of modern society. Every part of modern life is connected to some structure.
From buildings serving as houses and workplaces to vehicles facilitating human transport, structures prove to be
essential elements of life. However, in order to deliver their function effectively, they should be monitored and their
efficiency should be maintained. For this purpose, structural health monitoring (SHM) has been developed. SHM is
the discipline of inferring whether damage is present in a structure, what type of damage and where it is present, how
severe it is and how much useful life remains for the structure [1]. The most preferred way of performing such actions
is through data-driven methods [2]. Following such an approach, the results rely largely on the data. In some cases,
trying to compensate for the lack of data, knowledge is induced into such black-box models, forcing the model to
learn in accordance with rules, that according to the user’s knowledge are defined by the underlying physics problem.
Combining knowledge and data in such a way leads to creation of grey-box models.

A significant factor that affects structures, their behaviour and the potential appearance of damage is the environment
within which they exist and interact. Most loads that a structure is excited by are because of the environment it
operates in. Because of variations in their environmental conditions, the response of structures also varies. The
behaviour of a structure may change in accordance with environmental factors such as temperature, humidity, direction
of the load, magnitude of the load, etc. All these conditions change the way that a structure responds to excitation
and sometimes such a change in the response may even be mistaken for existence of damage by algorithms that detect
novelties in the behaviour of structures.
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A quite simple data-driven approach to detecting existence of damage within a structure, is that of calculating novelty
indices [3]. The index is a distance metric between data acquired during the normal condition operation of the
structure and a state of the structure that one wants to test for damage. Methods like this are efficient in some
cases and able to indicate whether the structure behaves in a different way than normal. However, they are often
vulnerable to false positive alerts regarding the existence of damage. The normal condition data are often represented
only via their mean value and covariance matrix and the algorithm would be inefficient if extensive variations of
normal condition structural behaviour existed.

Given a structure that operates within varying temperatures, its behaviour may change significantly as a function of
the temperature. Lower temperatures can cause increases in stiffness of structural members and higher temperatures
may have the opposite effect. Data can be acquired from a structure during a period in which its environment has a
specific temperature. Following the novelty index approach would indicate damage existence if, during the period of
the test state, a different temperature prevailed. But, even if a secondary and unknown environmental parameter
variation appeared, such us change in humidity in specific parts of the structure, the novelty index approaches could
also indicate existence of damage.

In the case of nonlinear structures, variance in normal condition features is also observed even as a result of variations
in the characteristics of the loads. Linear structures would behave similarly under harmonic loads with different
magnitudes; their frequency response function (FRF) is not a function of the load but only of the structure’s parameters
(stiffness, damping, mass etc.). A structure with nonlinear elements, such as a Duffing oscillator, has variations in
behaviour, in terms of the FRF, according to the signal characteristics of the excitation force applied. Structures with
much more complicated nonlinearities than a Duffing oscillator exist. Different kinds of nonlinearities (both geometric
and in material behaviour) make the definition of normal condition characteristics a complicated task.

Approaches to deal with such issues have been developed. An example is presented in [4], where an auto-associative
Network (AAN) [5] is used as a tool to learn the normal condition manifold of a structure. The network is trained
using points that represent normal condition characteristics of the structure. The AAN learns from such points,
how to project them in a lower dimensional space and then return them to the original space. Having been trained
in such a way, a novelty index is defined as the reconstruction error of an input point. The error is defined as the
Euclidean distance between the input and the output of the network. Points that lie on the manifold of normal
condition operation, should have a small reconstruction error, since the AAN has learnt how to project onto this
specific manifold. At the same time, points that diverge from this manifold would have a higher reconstruction error
and this would indicate that damage may exist in the structure.

Following the aforementioned approach, a description of the normal condition manifold is achieved and anything
that does not belong to that, is considered as a potential damage existence sign. The most trivial problem with
the method, as with any fully data-driven method, is that the model, is only as good as the available data. Since
prior physical knowledge is not induced by the user into the model, any state of the structure that is not represented
somehow by the normal condition data, is considered as a potential damaged state. This fact may lead to false
inference and start an unneeded maintenance procedure that would result in economic loss.

As an attempt to deal with such a problem, in the current work, an algorithm that learns transformations of manifolds
is considered. The algorithm is that of the conditional generative adversarial network (cGAN). The main difference of
this algorithm, in contrast to the traditional (vanilla) GAN, is that knowledge is introduced in the algorithm through
a part of the input vector controlled by the user. By knowledge of environmental conditions, it is expected that,
using the cGAN algorithm, a more concrete manifold of normal condition characteristics of the structure will be
created. This opportunity may be exploited in order to build more robust SHM models but also in order to study and
understand better the underlying physics of a problem in hand.

2 Generative adversarial networks

2.1 Introduction

One of many frameworks for machine learning algorithms is that of training generative models. Such models are
able to generate samples that belong to the same probability density distribution as some given data and in the
case of images this also translates into generating images that look real. A novel architecture for such models is the
generative adversarial network [6]. The novelty of the scheme is that of using two different neural networks in order
to achieve the result of generating images that resemble reality. The two networks concerned are the generator and



the discriminator. In the original work, the algorithm was focussed on images but throughout the current work, the
algorithm shall be focussed on vector samples, since they are of more use in a dynamics or SHM project

Each of the two networks serves a different purpose throughout training, and their interaction yields the desired
results. The discriminator on the one hand is optimised with a view to identifying whether a sample is real and
comes from the original dataset or if it is fake/generated. On the other hand, the generator’s training is focussed
on “fooling” the discriminator by generating samples that the later will consider as real. Following such a scheme,
throughout training, both networks perform their functionality better and the generator, eventually, is a network that
will be generating real-like samples. The discriminator eventually performs in a similar way to the novelty detection
algorithm presented in [4], learning the manifold of the data and indicating samples outside it as outliers.

As a general case, both networks can be multi-layer perceptron (MLP) networks. The generator G takes as input
a latent noise vector z from a probability distribution pz(z) and transforms it into a generated sample (or image)
G(z). The discriminator D takes as inputs vectors (or images), and outputs the probability of them being real,
i.e. Px∼pdata

= D(x). The discriminator is optimised by setting as target values for the input samples their labels
(“real” or “fake”) while the generator is optimised to make the discriminator classify the generated images as real, i.e.
minimisation of log(1−D(G(z))). Therefore, the objective function of the described min-max game is given by,

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (1)

In practice, training is performed in two steps per epoch. During the first step, the discriminator is trained. Samples
from the latent distribution p(z) are sampled, and using them, the generator outputs samples. A second batch of
samples is picked randomly from the original dataset and concatenated with the generated ones. Using the two
batches, the discriminator is trained having as target labels, 1 for the real samples and 0 for the generated. During
this phase, only the first term of the right hand side of equation (1) is used and its maximisation is sought. During
the second phase, only samples from the latter distribution are sampled and this time the two networks are clipped
together as shown in Figure 1. This time, the trainable parameters of the discriminator are considered constants and
they are not optimised. The target label set for training is 1 for all samples, meaning “real”.

The error is back-propagated through the weights and biases of the generator. During this step, the second term
of the right hand side of equation (1) is used and the objective is its minimisation. By the competitive procedure
described, both networks get better at their respective objectives. In most cases, only the generator is utilised, with a
view to generating samples, while the discriminator is considered an auxiliary network used only for training.

Noise, z Generator

Generated
samples G(z)

Real
samples x

Discriminator Probability D(G(z))

Figure 1: Vanilla GAN layout.

Properly trained GANs could prove quite useful for SHM purposes. In SHM acquiring enough data in order to train a
machine learning model is sometimes hard and might be expensive. Therefore, using a GAN in order to augment
a dataset with artificial data is a possibly valuable use of the algorithm. The GAN can also be used as a tool to
implicitly enhance the performance of a neural network model, as described in [7], by exploiting unlabelled data.
Most applications of GANs are found in image processing [8, 9, 10]. Some of them have the quite impressive result of
manipulating image features through the latter variables of the GAN. In some cases, GANs are used in order to fill
gaps in images [11, 12]. All these applications encourage the existing belief that generative models may be able to
understand and recreate the physics of the underlying problems and should be exploited in order for humans to also
gain further insight into problems in which they lack knowledge. Even an augmentation of data may assist in this
task by providing more samples to study and understand underlying patterns and trends in the data.

2.2 Conditional generative adversarial networks

Conditional generative adversarial networks are an attempt to control the output of the generator by conditioning
on some variables. In contrast to the traditional GAN layout (Figure 1), where the product of the generator is



completely controlled by random noise z, the output of the generator is partially controlled by some vector c (called
a code here-in, in parallel with the code introduced in the infoGAN [13]). This code may be a continuous variable
or a discrete/categorical one. Since the output of the generator depends on the code, so shall be the output of the
discriminator. Following such a scheme, the layout of the cGAN is shown in Figure 2.

Noise, z

Code, c

Generator

Generated
samples G(z, c)

Real samples x, c

Code, c Discriminator Probability D(G(z, c))

Figure 2: Layout of a cGAN.

According to this approach, the discriminator learns that for each different value of c, a different decision boundary
(or manifold) is defined. According to this realisation, the discriminator creates a different decision boundary in the
feature space, as a function of c, for the outputs of the generator, forcing the latter to create samples that correspond
to the values of the code (also given as inputs to the generator). In cases of discrete or categorical variables, the
result is that the generator learns to generate samples belonging to different categories. In [14], an illustration of this
result is presented in the MNIST dataset; a dataset comprised of figures of hand-drawn digits between 0 and 9. By
defining nine categorical variables and a one-hot encoding of the different classes, the generator is able to generate
sample images in predefined classes, controlled by the code.

The use of continuous variables yields more interesting results. A continuous variable would force the decision boundary
created by the discriminator, within the multidimensional feature space of the samples, to get gradually transformed
according to the values of the code. The decision boundaries of the discriminator, in turn, force the generator to
create samples within the region they define. Consequently the geometry of the generated manifolds is controlled by
the code vector c. Following this procedure, what the generator has eventually learnt is the transformation of the
manifold of the generated points, as a function of the code.

The algorithm may be exploited in order to generate artificial data as a function of some code vector. In the current
work, it is exploited in order to learn the transformations of the aforementioned manifolds, as functions of the
code. The most straightforward way that the algorithm might be used would be to fully control the class of the
generated samples (as in the case of the MNIST dataset) and create artificial datasets according to one’s needs. For
SHM purposes, a more convenient use is that of learning how the manifold of data transforms according to some
environemental parameter.

As mentioned already, a common problem that arises in SHM is that the normal condition data are different for
varying environmental conditions. Assuming that the normal condition data are not a single point but a manifold
of points (as a result of noise or unknown environmental factors affecting the structure), their transformations as a
function of known environmental parameters are desired. Learning such transformations would allow generating the
normal condition manifold for unseen values of the code, understanding better the way that the structure behaves
and creating a more complete dataset regarding its normal condition/undamaged state. In the following section, an
application in a toy dataset is illustrated with a view to explaining the proposed algorithm and afterwards, an SHM
application on simulated data is presented.

3 Applications

3.1 Toy dataset

Initially, in order to better illustrate the potential of the algorithm, a toy dataset was created. The data were
two-dimensional and had x values sampled uniformly in the range [−1, 1] and y values sampled from a normal
distribution y ∼ N (0, 0.03). The result is shown in Figure 3. Afterwards, in order to create manifolds whose
transformation was a function of a known parameter, the samples, shown in Figure 3, were rotated using angles in
the range of [−π2 ,

π
2 ]. The result is partially shown in Figure 4.



Figure 3: Base data, corresponding to angle of 0.

Figure 4: Collection of manifolds of the toy dataset.

The transformation of the initial manifold in this case is simply a rotation of the points around the point (0, 0). In
order to test if the cGAN would be able to learn such a transformation, a traditional scheme followed in machine
learning was applied. Three datasets were created, a training, a validation and a testing one. The training dataset was
created by generating points for 11 values of the angle equally spaced in the interval [−π2 ,

2π
5 ]. The other two datasets

were comprised of points for values of the angle also equally spaced in the same interval. Some of the manifolds
within the created datasets are shown in Figure 5. The training dataset should contain manifolds corresponding to
the two outer values of the interval [−π2 ,

2π
5 ] so that the transformation task is an interpolation across values of the



angle parameter.

Figure 5: Points belonging to the training (blue), validation (orange) and testing (green) datasets.

Since the loss function of a GAN does not directly represent the quality of the model [6], another training scheme
has to be followed in order to have a metric of the performance of the algorithm on the validation set. The strategy
used here is to calculate the Kullback–Leibler divergence (KL divergence) [15] between the generated points for every
validation code and the points in the validation dataset that correspond to each code. KL divergence is used to
measure the distance between two probability distributions, so a probability distribution has to be defined for both
the generated and the real points of each code. In order to define such distributions, kernel distributions [16] are
fitted to both the real data and the generated. The divergence is then calculated between every pair of generated
and real data for every code value. The model that has the lowest cumulative KL divergence in the validation set is
considered the best one. The total KL divergence of a model is given by,

nval∑
n=1

DKL(Pi||Qi) =

nval∑
n=1

∑
x∈X

Pi(x) log(
Pi(x)

Qi(x)
) (2)

where the Pi and Qi distributions are kernel density estimates fitted to the real and generated data, for the i-th
code. The KL divergence is numerically computed on a grid in the feature space X for discrete values of x ∈ X. The
bandwidth of the kernel density function can be considered as a hyperparameter of the algorithm. In the current
work, a reasonable value for the bandwidth was considered to be 0.2, since all the data are normalised in the interval
[−1, 1] and a value equal to 1

10 of the total range can sufficiently describe the distribution of data.

The generator was selected to be a three-layered neural network. The first layer was the input one with a total size of
three (a two-dimensional noise z plus an one-dimensional code c), a hidden layer, for which different sizes in the set
{10, 20, ...790, 800} were tested, initiallising each randomly ten times. Eventually, a 500-node sized one was found to
yield the best results in terms of KL-divergence in the validation dataset. The output layer was a three-node layer.
The activation function that performed best was hyperbolic tangent. In every case the discriminator had the same size
hidden layer as the generator. Following such a procedure, a model was defined whose performance was also tested on
the testing dataset. The result for two code values belonging to the testing dataset are presented in Figures 6 & 7.

It is revealed that the algorithm has indeed learnt how the manifolds transform/rotate according to the value of the
code. The overlap between the generated and the real points for code values that the cGAN has never “seen” before
is quite satisfactory as shown in Figures 6 & 7. Another advantage of a cGAN approach is revealed in the specific
toy example. The manifolds share regions within the two-dimensional space. There are regions common to every



manifold, close to the center and manifolds with similar angle values share more points. If another variation of GAN
were used, in order to achieve similar results, an extra axis would be needed in the data. This axis would be the
variable that is known and that is induced as the code in the cGAN. Even doing so, the encoding of the new axis as a
single latent variable of the GAN is not guaranteed.

Figure 6: Real (orange) and generated (blue) points for code value in the testing dataset.

Figure 7: Real (orange) and generated (blue) points for code value in the testing dataset.

3.2 Generation of artificial parametrised data

In order to test the potential of the algorithm in a different dataset, which is bound by some underlying physics, a
simulated six-degree-of-freedom system was considered (Figure 8). In the system, two different variables were chosen
to affect its behaviour and to be causing variations in the characteristics. The first variable, the one known by the user
and passed into the cGAN as prior knowledge, is the temperature. The temperature affects the stiffness of all springs.
Higher temperatures causes stiffness reductions, while lower ones increase it. As a second varying environmental
parameter, humidity was selected. Humidity in such a system could potentially affect the damping parameters of the
system. Higher humidity could lead to higher damping coefficient ci and lower to the opposite. Temperature was
selected to be varying in the interval [20, 40] and humidity in the range [80%, 100%].

The initial values of the structural parameters were ki = 104, ci = 10 and mi = 1 (i = 1, 2...6). In both cases, the
relationship between the parameters and the environmental conditions was linear. Stiffness (ki) increases or decreases
linearly according to ki = k0 ∗ (1 − T−30

100 ), where k0 is the initial value of the stiffness and T is the temperature.
Thereinafter, 1000 simulations were performed for each one of 11 discrete values of the temperature using a white
noise excitation on mass #1, as shown in Figure 8 and random values for humidity. Humidity was considered to
affect the value of the damping parameters following the relationship c = c0 ∗ (1 − h−90

100 ), where h is the value of



m1 m2 m3 m4 m5 m6

F

k1 k2 k3 k4 k5 k6

c1 c2 c3 c4 c5 c6

Figure 8: Mass-spring system.

the humidity and c0 the initial damping parameter values. For every simulation, the transmissibilities between the
masses 1-2 and 2-3 were recorded, polluted with Gaussian noise (r.m.s. equal to 5% of the signal’s variance) and
concatenated. A typical example of such a feature is shown in Figure 9.

Figure 9: Example of simulated transmissibilities recorded.

After collecting the transmissibilities, a principal component analysis (PCA) [17] was performed, both in order to
depict the data and to accelerate the training of the cGAN. The collection of generated points is shown in Figure 10.
The movement of the data within the feature space, according to the temperature, is revealed by the gradual colour
change. The variation caused by the humidity is also visible, since each batch of points having the same temperature
is spanned along a line segment.

Among the 11 temperature values, one of them (24◦C), was considered to be the validation dataset and another one
(34◦C) to give the testing. The highest and lowest values were included in the training dataset. Following the same
procedure as before, the cGAN was trained and the criterion to choose which one performed better was once again
the KL divergence between the real and generated points of the validation code/temperature.



Figure 10: First three principal components of simulation data.

The performance on the testing set is shown in Figure 11. The two batches (real and generated) are, as before, quite
close. In order to illustrate also the results in terms of the transmissibilities, in Figure 12 two tranmissibilities are
shown, one generated using the testing code and one drawn from the testing dataset. For comparison, they are plotted
along with a real transmissibility that corresponds to 20◦C. It is clear that the cGAN has captured correctly the way
that the diagram moves according to the temperature. A quite interesting application of such a model is that it may
be used to generate the whole manifold of points for all intermediate temperatures that were not recorded for the
structure. By generating points for many temperatures in the range [20, 40] the resulting manifold is shown in Figure
13. Such a manifold provides a better description of the normal condition characteristics of the structure over many
different temperatures. In the example presented here, the only unknown varying parameter was humidity but in any
case there could be any number and the cGAN would be able to generate such manifolds for every value of the known
code.

Figure 11: Real (orange) and generated (blue) points on the testing set for the temperature value of 34◦C.



Figure 12: Transmissibility recorded from simulations with temperature 20◦C (blue) compared to recorded transmissi-
bility in 34◦C (orange) and generated (red).

The cGAN is called upon to learn such movements and rotations (transformations) of the manifolds that arise because
of the effect of temperature on the data. The convenience of the algorithm lies in the fact that a clear separation
between known and unknown environmental parameters is performed. One needs to specify the values of the known
parameters, and the algorithm is able to generate a range of plausible values (shown in Figure 10 as points with the
same colour/temperature) of the feature vectors used for training. The aforementioned range is caused by the effect
of unknown underlying factors, i.e. the variation in humidity herein. Having further knowledge about the factors,
measuring more environmental parameters and using them as inputs in the algorithm, the aforementioned range,
potentially, becomes smaller and the algorithm yields more confident predictions. Therefore, the code and noise
vectors can be thought of as respective representatives of the existing knowledge about a problem and the epistemic
uncertainty/lurking variables affecting it.

Figure 13: Manifold representing samples for all temperature values in the range [20, 40].



4 Conclusions

The algorithm presented in the current work may be exploited in order to create data for unseen states of a structure.
Data that correspond to discrete values of some parameter affecting the behaviour of the structure, are used to train
the cGAN. Considering that the structure operates under known (or measured) and unknown (not measured or
immeasurable) environmental parameters, the algorithm proposed can take both into account and generate artificial
data for values of the known ones for which data are absent. This effect is achieved by learning transformations of
manifolds according to the known environmental parameters. The method proposed in order to construct the whole
manifold of potential states of a structure for varying environmental conditions provides a tool for understanding
better the structural behaviour.

A major drawback of the described algorithm is the calculation of the KL divergence as an error metric in the
validation dataset. The quantity of equation (2) is calculated on a grid over the Rn, where n is the dimensionality of
the data. Such a calculation is computationally inefficient. For example, having a grid with only 10 points per axis
would require computing the probability for every validation code in 10n points. In the presented applications, the
computation was performed in a three-dimensional space and so it was feasible, but for larger spaces it would not
be. Nevertheless, since in SHM the monitored quantities can be low dimensional (or projected in lower-dimensional
spaces, as was done here using PCA), the method still constitutes a viable tool.

The whole manifold of potential states may prove useful in situations where a novelty detection system is to be set
up for monitoring. Apart from such applications, manifolds characterising structures may be even more useful in
knowledge transfer situations. As proposed in [18], a knowledge transfer scheme between structures of a population
(even a heterogeneous one) can be applied in order to generate data for structures that one has not acquired. Under
this framework, for each structure, the complete manifold of potential states, and not just parts of it, would make
knowledge transfer much more applicable. In total, even the current method can be thought as a knowledge transfer
method between states of the structure, parametrised by environmental conditions.

Finally, a useful and thought-invoking characteristic of the algorithm, is the way that knowledge and uncertainty are
represented through the two parts of the input vector of the generator. Knowledge is represented through the code
vector, which incorporates the known variables and parameters that affect the behaviour of the structure. Uncertainty,
both epistemic and aleatory are encoded within the code vector. The cGAN generates data according to both, proving
a convenient way of maybe propagating uncertainty in a fully data-driven framework.
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