
Towards a population-informed approach to the definition
of data-driven models for structural dynamics

G. Tsialiamanis1 , N. Dervilis, D.J. Wagg, K. Worden

Dynamics Research Group, Department of Mechanical Engineering, University of Sheffield
Mappin Street, Sheffield S1 3JD

Abstract

Machine learning has affected the way in which many phenomena for various
domains are modelled, one of these domains being that of structural dynamics.
However, because machine-learning algorithms are problem-specific, they
often fail to perform efficiently in cases of data scarcity. To deal with
such issues, combination of physics-based approaches and machine learning
algorithms have been developed. Although such methods are effective, they
also require the analyser’s understanding of the underlying physics of the
problem. The current work is aimed at motivating the use of models which
learn such relationships from a population of phenomena, whose underlying
physics are similar. The development of such models is motivated by the
way that physics-based models, and more specifically finite element models,
work. Such models are considered transferrable, explainable and trustworthy,
attributes which are not trivially imposed or achieved for machine-learning
models. For this reason, machine-learning approaches are less trusted by
industry and often considered more difficult to form validated models. To
achieve such data-driven models, a population-based scheme is followed here
and two different machine-learning algorithms from the meta-learning domain
are used. The two algorithms are the model-agnostic meta-learning (MAML)
algorithm and the conditional neural processes (CNP) model. The two
approaches have been developed to perform within a population of tasks and,
herein, they are tested on a simulated dataset of a population of structures,
with data available from a small subset of the population. Such situations are
considered to be similar to having data available from existing structures or
structures in a laboratory environment or even from a model and needing to
model a new structure with only a few available data samples. The algorithms
seem to perform as intended and outperform a traditional machine-learning
algorithm at approximating the quantities of interest. Moreover, they exhibit
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behaviour similar to traditional machine learning algorithms (e.g. neural
networks or Gaussian processes), concerning their performance as a function
of the available structures in the training population, i.e. the more training
structures, the better and more robustly the algorithms learn the underlying
relationships.

Keywords: Structural dynamics, machine learning, population-based modelling,
transfer learning, meta-learning.

1. Introduction

Modelling of structural dynamics has been extensively studied throughout
the years. The need to study how structures behave and react to the various
conditions of their environment is motivated by the need to create safe and
long-lasting infrastructure. This need has led researchers to try to understand
the physics of various materials and of structural members made from such
materials. Such studies led to creation of mathematical models, founded on
the understanding of the physics of the various components of the structures.

Numerous methods have been developed to analyse and predict the behaviour
of structures, but, arguably, the most common and successful means of
structural analysis is the finite element (FE) method [1]. The method has
been widely successful because of its generality and accuracy, especially for
static problems. Although the FE method was developed many years in the
past, the advance of computational resources [2] have allowed the modern use
of ever more detailed and complicated FE models, maintaining the method
as the dominant structural-analysis strategy.

Naturally, models are used to simulate structures before fabrication and
after implementation. For the former case, one typically has no available
data in order to define the parameters of the model. The selection of the
parameters is performed using engineering intuition and available data from
experiments or from existing structures, built with similar materials and
comprising similar structural members. For the latter case however, the
analyst may have acquired some data from the existing structure and may
seek to tune the parameters of a model, so that the predictions of the model
align with the recorded data. The knowledge acquired from such a model
calibration procedure is in the form of values, or distributions of values, for
the tunable parameters of the models and can be exploited in similar tasks
in the future.

In recent years, because of the vast development of data-driven modelling
methods for many disciplines and because of how conveniently such methods
fit the framework of using data acquired from a structure in order to model
it, data-driven structural modelling has emerged as a viable approach. The
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field which has contributed most, is that of machine learning [3, 4, 5, 6],
and it has been extensively used for the purposes of structural dynamics
[7, 8], and quite often for structural health monitoring (SHM) [9]. The
success of the application of such methods lies in the fact that they learn
the underlying relationships of the modelled quantities from data and do not
require extensive physical understanding of these relationships by the creator
of the model. Data-driven methods are also able to effectively simulate
physics of different domains and without the restriction of time and space
scales.

However, the ability of data-driven models to learn without knowledge of the
underlying physics, comes with a shortcoming - the need for data. Depending
on the problem and the algorithm that is used, the amount of available data
and their quality might be restrictive in terms of performing appropriate
inference. In extreme cases data may not be available at all, making the
use of such algorithms difficult or even infeasible. In the field of structural
dynamics, this problem is extensive [10]. Data from structures are not always
available, need specialised equipment to be acquired and in many cases, the
environmental conditions during the acquisition of the data may not be the
same as the conditions under which one seeks to model the structure. The
latter problem is evident when one performs experiments in a laboratory
and uses these data to model a structure in the field.

Physics-based models do not suffer very often from lack of such data. The
reduced need for data is balanced by the imposition of physics into the model.
Assuming that the physics are accurate to a prescribed level, the model
would be expected to be able to generalise well, even if it is calibrated using
only a small number of data points [11]. However, the physics are not the
only factor that allow these models to generalise that well. An aspect of
such models is the convenience of knowledge transfer between members in
a population of structures. As mentioned, studying structures started by
studying materials and simple components in a laboratory. Subsequently,
the acquired knowledge is used to model real and complicated structures
based on the behaviour observed in the laboratory. The results of calibrating
a model, e.g. a FE model, can provide a prior belief, which could assist
in modelling a structure comprising the same materials and same type of
members.

Apart from the reduced need for data, a convenient characteristic of physics-
based models - such as FE models - is that they are preferred because of
their explainability. The models have been used for several decades and
details about their functionality are known either by analyses that have been
performed, or by hands-on experience of the users. This explainability also
comes from the fact that their tunable parameters are quite specific and the
effect of variations in these parameters can be systematically studied. A large
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contrast to the physical trainable parameters is identified if one compares
them with the trainable parameters of neural networks, which quite often
have no physical meaning and their variations cannot be correlated to specific
physically-meaningful effects on the behaviour of the model.

Motivated by this functionality of physics-based models, the current work is fo-
cussed on the use of data-driven models, which are informed by populations of
structures in order to boost their performance, increase their trustworthiness
and impose a sense of explainability. Similar population-based approaches
have very recently been followed for SHM problems [12, 13, 14, 15, 16]. The
approach proposed here-in is to define data-driven models which are able to
adapt to different members of the population, in a similar manner to how
corresponding physics-based models are used in a population. In Section
2, the motivation to create such data-driven models is given, as well as the
formulation of such models and the potential benefits of using a population-
based approach. In Section 3, an introduction to meta-learning [17, 18],
is given, together with an explanation of its connection with population-
based modelling and two algorithms are presented as an attempt to define
population-informed models which extract knowledge from the population
without the need for the analyser to impose prior knowledge. In Section 4,
applications are presented to illustrate the potential of the algorithms in
comparison to a traditional machine-learning method, which is trained with-
out exploiting any population knowledge. Finally, in Section 5, conclusions
are drawn and future work is discussed.

2. Population-based modelling

A general framework for physics-based modelling follows a mathematical
formulation of the physics of some phenomenon and the use of the model
to predict responses in hypothetical scenarios. For structural dynamics,
the objects under study are structures or structural members and often,
the inputs to the models are environmental and operational conditions or
loadings imposed by the environment. One example of such a situation is
a wind-turbine and the corresponding environmental condition might be
the ambient temperature and a potential excitation signal might be the
time-history of the wind speed.

The variables affecting the output of the physics-based model can be sepa-
rated into two categories. The first category comprises the variables x that
externally affect the behaviour of the structure. These variables may be
environmental variables, such as temperature and humidity or some external
loading, such as an excitation force, an earthquake excitation etc. The second
category refers to the parameters of the model c, which describe quantita-
tively the physics of the structure which is modelled. Such parameters are
often the Young’s modulus of the material, the Poisson’s ratio etc. The latter
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category contains the parameters of a model, which are tuned during the
calibration procedure. The quantity of interest y is then given by,

y(x) = fp(x; c) (1)

where fp is a physics-based model and the values of the parameters c
are chosen by the framer or the user of the model (at least their nominal
values are chosen, since the actual values might vary because of the effect of
environmental parameters). Naturally, the above formulation is subjected
to uncertainty. The uncertainty is often separated into two categories, the
epistemic uncertainty and the aleatory uncertainty. The first category mainly
refers to inconsistencies between the formulation of the model fp and the
phenomenon which it is used to model. The second category refers to
inherently random quantities or events. Throughout this paper, vectors are
represented by bold symbols, while scalar variables have regular symbols.

A calibration procedure according to observations of the quantities of interest
y yields a set of optimal parameters for the values of the tunable parameters c
of the model. The convenience of physics-based models lies in the fact that the
tunable parameters refer to properties of the materials and the mathematical
formulation of the physics is assumed to be common for structures made
by similar materials. As a result, to extend the modelling framework in a
population scheme, the modelled quantities yi of the ith structure are given
by,

yi(x) = fp(x; ci,Gi) (2)

where ci are the parameters of the ith structure and Gi is the geometry of the
ith structure. The geometry of the structure, which is incorporated in the
physics-based model, is another part of the physics that the users incorporate
into the model. In the case of FE models, the geometry refers to the number
and coordinates of the nodes of the model and the boundary conditions.
Transferring knowledge within a population is manual, but formulated and
facilitated by the mathematical formulation, as the values of the material
parameters c are transferred from one model to the other and the geometry
G is adapted to reflect the new structure, which is to be modelled.

The corresponding framework for structural modelling using data-driven
models is similar. A set of quantities of interest y is modelled as a function
of some input variables x. In the case of modelling a single structure, the
data-driven model fd has trainable parameters θ and the equation of the
predictions is given by,

y(x) = fd(x;θ) (3)
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However, in a population-based framework, the approach to transfer knowl-
edge is not the same as in physics-based models. The trainable parameters
θ cannot be trivially transferred or transformed, as in the case of the param-
eters c and the geometry G, in order to be used for another structure with
geometry G∗ within a population.

Under such a framework, attempts at knowledge transfer have been made
for SHM in [12, 13, 14, 15]. The first and simplest approach is based on
structures in homogeneous populations [12]. In that case, the structures
are considered similar enough, so that the same model fd shall perform
satisfactorily for all of them. To follow such an approach, one needs to find
the set of best fitting parameters θ, by solving the optimisation problem
given by,

θ̂ = min
θ
L(yi(x), fd(x;θ)) i = 1, 2..., N (4)

where L is some objective function expressing the distance between the
predictions of fd(x;θ) and the observations yi(x) of the ith structure, N is
the number of available structures and θ̂ captures the optimal values of the
parameters θ, which minimise L. In the equation above, the observations of
all N structures are included in the optimisation procedure, making the model
common for all the population or, as such models are called in [12], a form.
Such a model can also be a probabilistic model, yielding a probability density
function p(θ̂) instead of single point predictions, i.e. p(y|x) = fd(x; θ̂).

Structures with significant differences form heterogeneous populations, mak-
ing knowledge transfer more difficult. Various approaches have been followed
to deal with such problems. In [14, 19, 20], domain adaptation is exploited
to perform such knowledge transfer. The problems presented refer to classifi-
cation of damage on structures with significant differences and how a damage
classifier could be transferred and adapted to different structures.

The data-driven methods described so far do not take into account the
geometry and do not seek to exploit any other physical knowledge about the
structures. To consider the geometry in the inference process, in [13, 15],
a graph representation of the structures is used. The representation is
performed by breaking down the structures into irreducible elements (IEs).
Each IE represents a structural element and a graph is constructed by
connecting the IEs with each other according to the connectivity of the
structural elements. The graphs are attributed according to the properties of
the structural members and are used either to classify structures according
to their similarities [13, 21] or to perform inference within a population
comprising structures created by a set of members of the same type. The
geometry is part of the input, as in the case of physics-based models, like
FE models, partly compensating for the lack of a physical formulation. The
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output of such graph-based models fg is in this case given by,

yi = fg(x,Gi;θ) (5)

where x is some external input which affects the behaviour of the structure
and Gi is the geometry, represented via a graph, of the ith structure.

In order to compare the physics-based and data-driven approaches, one
should compare equations (1) and (3). Doing so, a parallelism is observed.
In both cases, the modelled quantities y are a function of some inputs-to-
the-model x and some parameters of the model, either c and G in equations
(1) and (2) or θ in equation (3). The major difference between physics-based
and data-driven models can be summarised in the difference between the
two sets of parameters c and θ.

On the one hand, the parameters c describe the physics of the structure;
they vary within an interval of potential values according to the phenomena
they describe and are chosen by a user so that they best reflect the physics
of the object modelled. Their values are also explainable and meaningful ; for
example, a material with higher value of Young’s modulus than some other
material is a more stiff material. During a model calibration procedure, a
set of model parameters c is sought, which will sufficiently fit the acquired
data from some structure. The resulting set of parameters has a strong
physical meaning, since the model is bound by the physics imposed by its
mathematical formulation. In some cases, calibration may be performed
manually using a trial and error technique by an experienced user. Hence, one
is confident that, using the same or similar parameters for similar structures,
will result in good accuracy for predictions regarding the new structure.

On the other hand, the parameters θ are selected via the optimisation
described by equation (4) and usually have no physical meaning. Taking also
into account that black-box models are often overparametrised functions (e.g.
neural networks); the set of parameters, which best describes a relationship,
is not necessarily unique. The latter issue of non-uniqueness creates problems
when such models are used in a population-based framework. As in the case
of physics-based models, it would be convenient if the population could be
described by varying parameters and if smooth alterations of these parameters
would correspond to smooth alterations of θ. However, this is not the case,
since some parameters θi may describe sufficiently the physics for some
structure i, but for a different structure with slightly different characteristics,
the optimal set of parameters may not even be in the neighbourhood of
θi. For the case of physics-based models, the set of all plausible values of
c defines all the potential forms of the model and describes a population
parametrised by c and its plausible values. In contrast, a data-driven model
fg(x;θ) does not define a meaningful set of mappings for every value of θ,
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since for the majority of the values of θ, the model may not resemble any
plausible reality.

Trying to create a data-driven model which shall be able to perform within
the population and not for a single structure, one could attempt to create a
model that takes as inputs the parameters c, which describe every structure
of the population. The modelled quantities y will then be given by,

y(x, c) = fd(x, c;θ) (6)

This approach outweighs the use of a physics-based model as in equation
(1), in the case of existence of epistemic uncertainty for the physics-based
model; i.e. when one is not confident that the physical formulation of fp

does sufficiently describe the underlying physics of the problem.

A first problem with this approach is that the available data for the population
may often be imbalanced, in the sense that more data may be available for
some structure i, and the available data for some other structure j may
be restricted. In some cases, this imbalance may not be a major issue,
but in general, for structural dynamics, datasets tend to be quite sparse.
Commonly, for a small number of structures, plenty of data are recorded,
while for other structures only a few samples are available. The imbalance
may come from the fact that some structures are in a laboratory environment
and tested extensively or accurate models may exist for structures, which are
trustworthy and allow testing a structure under various ‘what-if’ scenarios.
Furthermore, if the data of the available structures refer to a small subregion
of the parameter space of the structures, the model fd shall essentially be
called on to extrapolate for other subregions of parameters, a functionality
that most machine-learning algorithms lack. A type of machine learning
models that exhibit some extrapolation capabilities are the physics-informed
neural networks (PINNs) [11].

The second major problem is the parametrisation of the structures. For FE
models the geometry G serves as a parametrisation technique; as described by
equation (2). For data-driven models and simple cases, such as a population
of beams or cantilevers, the parametrisation via the use of the dimensions
of the structures is straightforward. However, in other cases, it can be
extremely complicated and even infeasible. For example, which parameter
vector c should be assigned to the wing of a commercial aircraft and which
to the wing of a military aircraft? Both wings are intuitively placed in the
same population of structures, but that does not mean that defining a set of
parameters which characterise the population is a trivial task. To deal with
such issues, as mentioned, in [13], a breakdown of structures into irreducible
elements (IEs), and a conversion of structures into graphs is presented. In
[15], an attempt is made to use such graphs in order to perform inference
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for the population. However, the algorithm presented in [15] requires large
amounts of data and an automatic and holistic way to transform structures
into graphs. Steps towards an objective transformation of structures into
graphs have been recently made in [21].

To deal with the aforementioned problems during the definition of a data-
driven problem, a population-based approach is proposed in the current work.
The population-based approach, as mentioned, is motivated by PBSHM. The
use of a population of structures as a means to train data-driven models is
expected to add useful features to these models, that they lack compared
to physics-based options. Such features are the ability to be trained and to
perform with a few available data samples from a testing structure. Moreover,
because the validation of models is becoming increasingly important [22], the
population-informed approach aims at creating models which, being validated
for some structures of the population, are more trustworthy than data-driven
models which are not informed somehow by the population. The described
approach of using data-driven models may also result in quite explainable
models. The explainability is encouraged by the fact that the model shall
follow the rules of the population for predictions outside the domain of
available data for a testing structure. In contrast completely black-box
models may behave almost randomly outside their training domain.

3. Two approaches for population-informed neural network models
of structures

3.1. Meta-learning for population-based modelling

The aim of the current work, is to create a data-driven model - more
specifically a neural network - which shall be used within a population
of structures, in a similar manner that a physics-based model would be
used. The similarity which is sought, is that between equations (1) and (3).
As mentioned, a physics-based model, following equation (1) with varying
parameters c, is able to model a potential population of structures which
is parametrised by c. As a first attempt towards this direction it would be
convenient and desirable to have a similar data-driven model as of equation
(3), whose parameters θ would vary and their variation would be in order to
model a different member of the population. The space of parameters θ is
essentially Rnθ , where nθ is the number of trainable parameters of the neural
network model fd. A way to force variation of the parameters to explicitly
reflect the various structures of the population is to allow the parameters to
vary only within a manifold of Rnθ . Having the parameters “trapped” on
this manifold, creates a model fd whose parameter variations have acquired
some physical meaning, i.e. each point of the manifold describes a different
structure of the population (which would otherwise be described by c).
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Figure 1: Example of a mass-spring system, with masses m, damping coefficients c and
spring stiffness k, which is a function of the environmental conditions e.

Regarding the types of populations to which one could apply such a frame-
work, the homogeneity of the population should be taken into account. For
quite similar structures, such an approach would be more efficient, similarly
to physics-based modelling, where for a homogeneous population, variations
of a small subset of parameters (e.g. material-properties parameters) would
suffice to model the population. For more heterogeneous populations in the
physics-based modelling framework, the geometry of the model might have
to change to account for the different structures. The homogeneity of the
populations in the current work plays an important role, however, homo-
geneity in this case should refer to homogeneity of the underlying functions
that are modelled. Intuitively, one would expect that homogeneity in the
population would lead to homogeneity in the modelled functions. Therefore,
it would be safer to follow an approach like the one described in [13] to define
a sufficiently-homogeneous population to apply the current methods.

In a structural context, the desired behaviour of the algorithm can be
described here via an example. Consider a simple simulated lumped-mass
system, as shown in Figure 1. The mass-spring system is defined by its
structural parameters: the stiffness k, the damping coefficient c and its mass
m. The physics of the system are dictated by the equation of motion,

M ÿ + Cẏ +Ky = x(t) (7)

where M , C, K are the mass, damping and stiffness matrices of the system,
ÿ, ẏ, y are the vectors of accelerations, velocities and displacements of the
degrees of freedom of the system and x(t) is the vector containing the external
forces applied to the degrees of freedom of the system as a function of time.
Since the system, as mentioned, belongs to a population of similar systems,
many such systems are considered here by varying the stiffness parameter k.
The system may also be considered to have varying structural parameters as
a function of some environmental parameters e; e.g. temperature, humidity
etc. In the current case, for simplicity, only the stiffness is considered to be
affected by the environmental conditions.

For a single structure, a neural network, can be trained to predict some
features of the system; e.g. its natural frequencies, a frequency response
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Figure 2: Schematic representation of an objective function L as a function of the trainable
parameter θ and two local minima shown in orange and green.

function (FRF), a transmissibility etc. This is a single task τi and can be
effectively dealt with (and has been performed in the past), given enough
training data denoted as,

Di = {(ej ,yj)}, i = 1, 2...n, j = 1, 2...m (8)

where ej is the jth instance of environmental conditions and yj the corre-
sponding vector of quantities that are being modelled. To illustrate the
desired form of data-driven models, in Figure 2, the value of the loss function
L is shown (the magenta curve) as a function of the trainable parameters
θ (the parameter space will actually be multidimensional with very high
dimensionality for neural networks, but for the sake of simplicity and visu-
alisation it is depicted as one-dimensional). In the same figure, two local
minima are also depicted; whether they are local or global minima is not of
interest for the current case study, as long as the accuracy of the model for
the specific set of parameters is acceptable. Consider the values of the loss
function, as well as of the minima, to correspond to the whole range of input
values: i.e. the value of the loss L is the total discrepancy between all the
potential predictions of the model and the true underlying relationship of
the environmental conditions e and the quantity y predicted.

The orange point corresponds to a lower loss value, meaning that the corre-
sponding parameter values are the optimal choice for the current task. The
green point is also a local minimum and its accuracy may also be acceptable
for the purposes of the task. Considering the system within a population-
based scheme, another structure is introduced, which is to be modelled using
the same model (i.e. the same architecture neural network), and the same
loss function. The newly-introduced loss function landscape is shown in
Figure 3 (blue curve). As shown, the parameters which corresponded to the
minimum for the previous structure, do not correspond to a local minimum.
However, one of the two minima may have moved to a neighbouring point,
the light green point in the same figure.

This example is case specific, but aims at demonstrating a problem that may
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θ

Figure 3: Objective function L for two tasks (magenta and blue lines) as a function of the
trainable parameter Θ and three local minima shown in orange, green and light green.

often occur when training data-driven models in a population-based scheme.
When considering a new task/structure, the minima of the first task most
probably will not be minima for the new task. However, some minima may
transition smoothly to neighbouring points of the parameter space, as the
underlying parameters that describe the tasks vary. Therefore, a family of
models may describe a variety of tasks, with their trainable parameters θ
lying on a specific area/manifold of the parameter space. As the tasks vary,
so shall the parameters that correspond to the local minimum, but always
on the same manifold/area of the parameter space.

To further visualise the idea above, a fibre bundle [23, 24] is considered. The
base manifold of the fibre bundle is the manifold of the tasks T . On this
manifold various tasks τi are located. The fibre corresponding to each point
τi of the base manifold, is the manifold shaped by the loss function L on the
parameter space Θ. Consider the set of points of the fibre bundle, which is
the collection of local minima for each task. Among these points, the desired
models lie on a cross section, i.e. a collection of points, across the whole
bundle, which are glued together. Given such a cross section, when one needs
to move to a neighbouring task, a local minimum for the new task shall exist
within the neighbourhood of the current task. The idea is depicted in Figure
4. In the figure, some tasks τi are shown with their corresponding fibres
(magenta vertical lines), defined as the corresponding losses in the parameter
space. The green- and orange-coloured points represent local minima on
these functions. As shown, for the orange local minima, as one moves towards
neighbouring tasks, the minimum remains glued to the minimum for a small
area of the task space, but after some point, it is not a minimum anymore. In
contrast, for the green minima, one can navigate through the whole manifold
T and for each step in the neighbour of the current task, a local minimum
will also exist in the neighbourhood of the current local minimum.

Fibre bundle shaped using as base manifold the manifold T of tasks τi, each
fibre corresponds to the loss function manifold Li in the parameter space θ.
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Figure 4: Schematic of a fibre bundle of the loss functions of a data-driven model across a
population of tasks. The base manifold T is formed by points representing the tasks τi
of the population. To every task τi, a fibre Li corresponds, which represents the values
of the loss function L for different values of the trainable parameters of the data-driven
model. The orange and green points represent parts of the fibre bundle where local or
global minima are observed regarding the loss function. The fibres intercepting an orange
area have a local or global minimum at the intersection point between the fibre and the
orange area. The same applies for the green area. However, the green area is a continuous
cross section along the whole bundle.

Also, local minima are shown with coloured points (green and orange).

From a physical point of view, the idea above coincides with the idea of
forcing the model to approximate the underlying physics of the population of
systems. A neural network may be trained to have acceptable accuracy for
the task in hand, but this does not mean that it has learnt the underlying
physics of the problem. Such generalisation problems may occur when the
training data come from specific operational conditions but the testing data
come from different operational conditions. According to the idea presented,
one can consider that the points on the green cross-section in Figure 4
correspond to a family of models that have learnt the underlying physics
of the population. The orange points cannot be considered appropriate
captures of the underlying physics, because as the parameters of the systems
change smoothly, the values of the trainable parameters of the model, which

13



correspond to a local minimum, should also change smoothly; however, these
points do not have this property.

Although the existence of such a cross section in the fibre bundle is not
guaranteed, it might exist for a population of structures with common
underlying physics. Consider the case of building a neural network model
which takes into account the parametrisation of the structures and aims at
approximating the behaviour of the structures of the population - similar to
the model fd of equation (6). In that case, fd approximates some quantities
of interest y as,

y = fd(xe,xτ ) (9)

where xe are the inputs describing the external/environmental parameters
and xτ are the input variables describing the structure/task. Let fd be a
feedforward neural network with specified architecture and, without loss
of generality, consider it to be the neural network of Figure 5. Consider a
second family of neural networks f̄d of the same architecture of hidden layers
and output layer but with input variables only the environmental variables
xe, defined as,

y(τ) = f̄d(xe) (10)

where the output is a function of the task τ . Without loss of generality,
let the f̄d neural networks be like the one shown in Figure 6. The neural
networks fd and f̄d can be equivalent for each task τ and the corresponding
inputs xτ by setting their common trainable parameters to be equal, except
for a small subset of them. The common trainable parameters of the two
neural networks of Figures 5 and 6 are the weights of the grey connections
and the biases of their neurons. For some task τi, the input values xτ for the
first neural network are constant. Therefore, in the second neural network,
for the same task τi, by varying some of its trainable parameters to account
for the missing contribution of xτ , one can get a neural network equivalent to
fd for constant xτ and varying xe; a trivial solution is to vary the bias terms
of the hidden layer to compensate for the effect of the missing neural-network
connections of xτ , the red connections in Figure 5. Denoting the trainable
parameters of f̄d, which need to vary to capture the effects of varying xτ , as
θv yields,

fd(xe,xτ ) = f̄d(xe,θv) (11)

Computing the derivatives with respect to xτ , and taking into account the
chain rule on the right hand side, yields,

∂fd

∂xτ
=

∂f̄d

∂θv

∂θv
∂xτ

(12)
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Figure 5: Neural network modelling the population with inputs regarding the external
variables xe and the structure xτ .

The quantities ∂fd

∂xτ and ∂f̄d

∂θv
are continuous for continuous activation functions

(or piece-wise continuous for activation functions such as relu or leaky-relu),
since they are derivatives of the output of neural networks with respect to
some of the input variables or some of their trainable parameters. As a

result ∂θv
∂xτ should also be continuous, except for the case that ∂f̄d

∂θv
is equal to

zero. However, the derivative of the output of a neural network with respect
to its trainable parameters is rarely exactly equal to zero, given that the
parameters θv emulate the effect of the task-describing variables xτ they are
not expected to be zero, since the task affects largely the quantities y. As
a result ∂θv

∂xτ is indeed continuous, meaning that, as the parameters xτ that
characterise the task τ vary smoothly, so do the trainable parameters θv of
the f̄d neural network, for which f̄d is equivalent to the fd neural network,
which approximates adequately the underlying physics of the population.
Although the above study is not a proof, it indicates that, if a latent set of
continuous variables which describe the structures exists, the model fd can
accommodate the changes in the behaviour by smoothly altering the values
of the trainable parameters. Thus, the cross section of the fibre bundle of
Figure 4, which connects the values of the trainable parameters for which
error minima are achieved, may exist for a population of heterogeneous
structures.

3.2. Model-agnostic meta-learning

For reasons covered in previous sections, data-driven models often lack the
ability to generalise well; this is often caused by the lack of sufficient data
for proper training or because one attempts to use such models on data
outside their training domain. To deal with such issues, several techniques
have been used. Such techniques are often referred to as few-shot learning
[25]. Methods belonging to the few-shot learning domain are: the Siamese
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Figure 6: Neural network modelling the population with inputs regarding only the external
variables xe.

neural networks [26], the triplet network [27], the matching network [28]
etc. Another way of dealing with such lack-of-data problems is transfer
learning, which attempts to solve these problems by exploiting knowledge
about models trained on some domain by transferring it to another domain.
This knowledge is usually in the form of some feature extractor [29], or by
seeking a domain, onto which data from different tasks can be mapped and
a common model can be used [19, 30].

Another approach that aims at dealing with the problem of lack of data
is meta-learning [18]. Meta-learning can be considered as the domain of
machine learning that aims at developing algorithms that ‘learn to learn’.
A general idea behind such an approach to machine learning, is that the
optimisation techniques that are being used - such as gradient descent [3, 4]
or Adam [31] - are general purpose algorithms and therefore, not targeted to
the problem that one seeks to solve. Furthermore, in the case of population-
based modelling, such optimisation algorithms do not exploit knowledge
across the population to enhance their performance. Consequently, the
goal of meta-learning is to force the training procedure to be effective for
a family of tasks; a family of tasks can be a collection of similar problems,
domains, or, as in the current work, a population of phenomena with similar
underlying physics. A physics-based version of this procedure is described in
[16], where the underlying physics of the modelled phenomenon are defined
via parametric functions. In the aforementioned work, the members of the
population behave according to the pre-defined functions, but also according
to tunable parameters, which are tuned in a Bayesian manner when data
are acquired from a structure. The definition of the underlying relationship
is done by the analyser, reducing the need for data to fit a model for a
new structure with a few available data samples. In the current work, the
proposed methods are expected to learn an underlying relationship from a
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population of structures via meta-learning.

A formalisation of meta-learning is given in [32], where its objective function
is defined as the maximisation of,

L = I(T , Dv)− βI(T , Dt) (13)

where T represents the different tasks (denoted as Z in the original work), Dv

and Dt represent the unseen data and the training data correspondingly, β
is a regularisation parameter and I is the mutual information. Maximisation
of the first term of the specific objective function means maximisation of the
information provided by the task τi regarding the relationship of the unseen
data Dv, i.e. the model should be able to make predictions for the testing
data more efficiently when the task is given or inferred. The second term,
as stated in [32] is a regularisation term which aims at reducing the mutual
information between the training data and the task in order to extract more
informative features for the unseen data. The regularisation term aims at
discouraging the model from overfitting to the training data and to learn
task-independent features. Optimising a population-informed model using
the above equation

Such a scheme matches the framework proposed in the current work. In
the case of having a physics-based model which describes appropriately the
physics of the population, as in [16], a small number of observations from
a new structure should suffice to define the parameters of the model and
to provide accurate predictions. Similarly, in the current work, a family of
neural network models is sought, which matches the underlying physics of a
population and, with only a small number of available training data, shall be
able to make accurate predictions. Therefore, considering that the current
task τi is described by the available training data, the maximisation of the
mutual information between the available data and the unseen data, could
provide such a family of neural-network models.

Meta-learning shows a similar approach to the problem of lack of data as
multi-task learning [33]. Methods of the multi-task learning domain involve
parameter sharing between the initial layers of neural networks. Examples
of parameter sharing be can found in [34] and [35], where hard and soft
parameter sharing techniques are presented respectively. Meta-learning
algorithms could be considered to be a subset of multi-task learning. The
main difference between the two is that meta-learning aims at developing
algorithms which are able to learn with a few data samples, in contrast to
multi-task learning, where often the size of the trainable parameters of a
model are reduced by using heuristics, such as whole neural-network-layer
transferring. Another difference is that many meta-learning algorithms are
focussed on the learning procedure itself, i.e. the optimisation of the model
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parameters.

Several methods are available to perform meta-learning as discussed in [18].
In the current work, the method selected to perform meta-learning within a
population of structures is model-agnostic meta-learning (MAML) [36]. The
method aims at training a model, which can quickly - i.e. with a few training
steps and with a few samples - adapt to a newly-presented task τ , which
comes from a family of tasks T .

In the original work [36], MAML is exploited to enhance the performance of
a classifier regarding the Omniglot dataset [37]. The dataset comprises 1623
handwritten characters from 50 different alphabets, written by 20 different
people. The resulting dataset has many different characters, but not enough
to train a convolutional neural network classifier to perform sufficiently in
recognising from which alphabet the characters come.

Altering the traditional machine learning framework and creating various
tasks, referred to as K-shot N -way classification, a different approach to the
problem is presented. The new goal is to define classifiers which distinguish
between N classes of the images having K samples from each class, where
K is often a small number and N is smaller than the number of all available
classes. Considering each K-shot N -way problem of the aforementioned
dataset as a different task, one should seek a way to exploit knowledge from
the whole population of tasks, in order to create models that are able to
accurately classify the data into N classes, even if the number K is extremely
small; in some cases K may even be unity.

The algorithm in the case of classification yields quite satisfactory results; it
is also tested in a regression problem and reveals promising results. In [36]
and [38] the method is used to approximate relationships which belong to a
parameteric family, transferring knowledge from a set of available observations
for some members of the population. In the current work, the underlying
physics of the population are defined by the parameteric functions, whose
exact relationship is considered to be unknown during inference. As in other
works, the algorithm does not need any prior knowledge of the potential
values of the parameters of the underlying relationships.

Following [36], the algorithm here considers a model fθ with trainable
parameters θ. In the original work, as well as in the current work, the model
fθ is a neural network. The common way of training a neural network for a
supervised-learning scheme, is to acquire a set of data Dτi for a single task
τi and perform backpropagation steps in order to find the set of parameters
θ∗, which minimises a loss function Lτi(fθ), summarised by,

θ∗ = min
θ
Lτi(fθ;Dτi) (14)
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where the dataset Dτi is of the form {(x1,y1), (x2,y2)...(xN ,yN )} and
(xj ,yj) is the jth pair of inputs xj and target output values yj . The model
with parameters θ∗ is considered trained and can be used to predict values
of the unseen quantities y∗ for new values of the inputs x∗.

The MAML approach aims at defining a model, as the initialisation point
of neural networks, which shall adapt quickly to new tasks. The difference
to traditional learning is that MAML encourages the model to find a point
in the trainable parameter space of the neural network, from where, with
a few backpropagation steps, the model should be able to converge to a
task-specific set of trainable parameters quite quickly. This point is found
by performing two sets of backpropagation steps. Initially backpropagation
steps are performed for a set of tasks Tt ⊆ T . The updated parameters θ′,
as a result of this first backpropagation step, the inner update, are given by,

θ′ = θ − α∇L(fθ;Dtr
τi ) (15)

where α is the value of the inner updates’ learning rate, L is a loss function,
∇L = [ ∂L∂θ1 ,

∂L
∂θ2

, ... ∂L∂θi ...]
T and Dtr

τi is a dataset sampled from the task τi.
After performing updates for tasks τi ∈ Tt, the second set of updates, the
meta-updates are performed according to the loss function defined as,

min
θ

∑
τi∈T
Lτi(fθ′) (16)

so the values of the trainable parameters θ are finally updated as,

θ ← θ − β∇θ

∑
τi∈Tt

L(fθ′
i
;Dm

τi ) (17)

where β is the value of the meta-updates’ learning rate and Dm
τi are the

data sampled from task τi for the meta-update. An important aspect of the
equation above is that the gradients are calculated not with respect to the
updated values θi, as it would be expected, but with respect to the values
of the model parameters θ before the inner update. The procedure aims
at training towards a point θ∗ from where task-specific model-parameter
updates shall result in minimisation of the loss function. By updating the
model parameters using gradients with respect to the parameters θ instead
of θ′

i, the error is backpropagated through the inner updates as well. As a
result, information is drawn from the inner updates, making the resulting set
of parameters θ∗ not an optimal set of parameters for all the tasks, but a set
of parameters from where training updates, similar to the inner-loop updates,
will result in a task-specific optimised model. The procedure is described in
Algorithm 1. Note that compared to the equations of the original work [36],
the notation p(T ) is not used, since the concept of a distribution of tasks

19



may be confusing.

The goal of such an approach is to find an initialisation point in the parameter
space for the neural network, which is “sensitive” to the change of task. Given
such a point, one can make the model adapt quite quickly to data from a
new task. At the same time, it is expected that since the model is sensitive
to the change of task, it shall also be able to adapt with a few training
samples, given that these training samples sufficiently characterise the task.
Backpropagation derives a limited amount of information from every available
data sample; therefore, following the MAML approach, one would expect to
balance the lack of information, from which a small dataset Dτt for some task
τt suffers, with the information encoded from the population while training
the MAML model.

The reason that such a training procedure assists in training models within
a population-based scheme might be explained by the no free-lunch theorem.
As described in [39], considering a hypothesis space H as the total space of
functions where one shall seek a solution to the a learning task, the error
R(h) of a function h ∈ H is bounded according to,

R(h) ≤ inf
h∈H
R(h) + ϵopt + ϵstat + ϵappr (18)

where ϵopt is the error of the optimisation procedure and refers to the learning
algorithm, ϵstat is the statistical error referring to the random selection of
training data and ϵappr is the approximation error, which refers to the error
regarding the subspace Hδ ⊆ H where the search is performed; for example
because of the random initialisation of the trainable parameters the search
might be restricted to a small subspace of the whole space of functions. The
term inff∈HR(h) refers to the approximation capabilities of the selected
model, which in the case of neural networks should be minimal, since they are
universal approximators. Meta-learning algorithms such as MAML, might
be a proper way of training models in a population-based framework, since
they aim at reducing the total error by reducing both the approximation
error and the optimisation error. The approximation error might be reduced,
since the algorithm picks an initialisation point from where solutions to the
tasks of the studied task family should be close. Thus the search space Fδ is
implicitly reduced, making the search easier. The optimisation error might
be reduced because the outer update of the algorithm backpropagates the
error through the inner optimisation step; hence, the initialisation point is
not only close to a local minimum, but also only a few backpropagation steps
away.

3.3. A task identification subnetwork for population-based modelling

A way in the literature to infuse population knowledge into a learning
algorithm is by using Gaussian processes and defining a proper mean and
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Algorithm 1 Model-agnostic meta-learning (MAML)

Require: Family of training tasks Ttr, testing tasks Tt loss function L, α,
β learning rates, model parameters θ
for each training epoch do

for each task τi ∈ Ttr do
Sample a set of data Dtr

τi for training of the current task τi
θ′
i ← θ − α∇L(fθ;Dtr

τi )
end for
Sample data for meta-training update from every task τi ∈ Ttr and

form the
meta-training dataset Dm

τi
θ ← θ − β∇θ

∑
τi∈Tt L(fθ′

i
;Dm

τi )
end for
Testing time
Sample a task of interest τj from Tt with available data Dt

τj
for each task-specific training step do

θ ← θ∗ − α∇L(fθ;Dt
τj )

end for

covariance matrix [7, 40]. Such an approach yields quite good results, but a
requirement of the method is that the mean or covariance functions can be
defined by the analyser, who is imposing knowledge into the algorithm. This
might not be a simple task and in some cases it might be a very difficult one;
for example, in the case of multidimensional output.

Motivated by the formalisation of meta-learning, as it is given by equation
(13), and by the way that Gaussian processes [41] function, an assembly of
two models for population-based modelling can be considered as an attempt
to define a population-specific Gaussian-process-like model. The first model
shall be used to identify a vector which characterises the tasks. The second
model, the main model, is created to consider the vector, which characterises
the specific task, and to make predictions about the quantities of interest.
The model should be able to perform this inference using a number of
observed input-output variables (xe,i,yi). Such a consideration corresponds
to the second part of the right-hand side of equation (13); i.e. the mutual
information between the available training data and each task. Although in
[32], the quantity is set to be minimised, in the current work it is believed
that its maximisation would benefit the training of the population-based
model. Maximisation of the aforementioned mutual information should yield
a model which is able to identify the task from a few available data samples
and use this information to effectively perform inference for unseen data.

Such a framework has been developed, termed conditional neural processes
(CNP) in [42]. The framework aims at imitating the behaviour of a GP,
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which uses some training data Dtr = {(x1,y1), (x2,y2)..., (xN ,yN )}, called
context points in the original work, as its base to make predictions about
new input variables x of interest. Although the basic formulation of a GP is
considered to be a black-box model, it could be argued that it is not. As
mentioned, a GP requires some training data as well as the selection of a
mean and a kernel function [41]. The latter two functions can be defined
by the analyser and can be parametric functions whose parameters can be
learnt from the available data. However, the form of the kernel function has
to be a priori defined, e.g. a Matern kernel, a squared-exponential kernel, a
linear kernel or a periodic one. In order to select one of these functions, one
would have to impose one’s intuition and prior physical knowledge into the
problem. However, if no prior knowledge exists, a general purpose kernel,
such as a Gaussian kernel can be used, which is appropriate for regression
and whose smoothness can be inferred or predefined.

The CNP neural network can be split in two subnetworks. The main network
is the one that makes predictions given the varying environmental variables
xe and an embedding of the task-descriptive variables xτ . The embedding
of the task-descriptive variable is given by the second subnetwork, which
infers an arbitrary set of task-descriptive variables exploiting information
from pairs of inputs and outputs of a newly-presented task. More specifically,
considering available data Di = {(x1,y1), (x2,y2)..., (xN ,yN )} for a task τi,
then the CNP provides predictions of the quantity of interest given by,

y = fd(xe,x1,x2...,xN ,y1,y2...,yN ) = f(xe, x̂τ ) (19)

where xe is the value of the environmental variables for which a prediction
is needed, fd is the CNP main network and x̂τ is the output of the task-
identification subnetwork. An example of such an assembly is shown in
Figure 7. In the example, the subnetwork shown in orange lines is the
task-identification subnetwork. In the specific case, the two available pairs of
known input and output vectors for the newly-presented task are, (xe,1,ye,1)
and (xe,2,ye,2). Although the model in the original work is not considered a
meta-learning method, one could argue that the model essentially learns to
perform the training procedure of a GP and can therefore be included in the
meta-learning discipline. The model performs qualitatively the functionality
described by equation (13), with a negative β and deals with the problem of
parametrisation of the structures, in a more direct way than MAML.

Because the models are connected in such a manner, training such a model is
done simply by backpropagating the error between the output and the target
vectors. For the framework of the current paper, a CNP model can be trained
by randomly sampling inputs to the task-identification subnetwork, input
variables xe and target values y from the data-rich structures. Then the
models can be tested on structures for which only a few points are available
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Figure 7: Neural network modelling the population with inputs regarding the external
variables xe and using a task identification subnetwork to map available data into some
replacement variables for the task-descriptive variables.

and make predictions for new input variables. In contrast to MAML, the
training of a CNP is done in a traditional neural-network-training manner.
The dataset is formed by randomly sampling points from the available dataset
and backpropagation is repeated for several epochs.

4. Applications

In order to evaluate the efficiency of the two discussed algorithms in creating
models that learn based on the population physics, an application on simu-
lated data is presented. The application refers to a population of simulated
lumped-mass systems similar to the ones shown in Figure 1. Each structure
of the population has a stiffness parameter k uniformly sampled from the
interval [8000, 12000]. The structures of the population are excited at their
first degree of freedom by a white noise signal and the simulations were
performed using fourth-order Runge-Kutta integration. The temperature is
taken into account as an environmental parameter affecting the structures.
The way that temperature is affecting the structures is by increasing or
decreasing the value of the stiffness parameter of the first three springs of
the system. This is considered to be an imitation of the fact that structures
are often heated disproportionally throughout their volume, for example a
bridge is often heated more on its deck than its pillars because of the sun
radiating on the top of the bridge.

Examples of frequency response functions (FRFs) of the first degree of
freedom of a system of the population are shown in Figure 8. The variation
of the FRFs is shown as different colours, from lower temperatures (blue
curves) to higher temperatures (red curves). The relationship of the stiffness
parameter k and the temperature is considered to be nonlinear and given by
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k = −13T 2 + 500T + 7200 (Figure 9) and the temperature is considered to
vary in the interval [20, 40].
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Figure 8: Frequency response functions of the first degree of freedom of a structure of the
population for varying temperatures. Lower temperatures correspond to blue curves and
as the temperature rises, the transition of the FRF is shown as a gradual change to red
colour. Note that the changes are quite substantial because the purpose of the application
is to illustrate the potential of the algorithms.
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Figure 9: Relationship between the temperature and the stiffness of the first three springs
of the systems of the population.

Three problems were studied in the current application. The first two
refer to building neural network models that approximate the relationship
between the temperature of the environment and the magnitude of a single
spectral line from the FRFs. Two spectral lines were chosen for illustration,
corresponding to 1 Hz and 50 Hz. Examples of the spectral lines for different
temperatures and for three different structures are shown in Figure 10. The
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two problems are studied because of a characteristic which is clear from the
two plots. In the first case, the 1 Hz spectral lines, the relationship between
the temperature and the task, and the value of the magnitude of the spectral
line is a bijection. As a result, only one point suffices in order to characterise
and identify the task for which inference is made; a functionality that both
approaches should perform. In contrast, for the second case, overlapping
between the curves is observed. Consequently it is expected that the latter
shall be a more difficult task, because more than one point from each task is
needed to perform the identification of the task.
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Figure 10: FRF line corresponding to frequency equal to 1 Hz (left) and 50 Hz (right), for
values of the stiffness equal to 8000 (blue curve), 9000 (orange curve), 10000 (green curve),
11000 (red curve) and 12000 (curve).

The third problem is that of building a model to approach the whole FRF.
To reduce the dimensionality of the FRFs, which are inferred, principal com-
ponent analysis (PCA) [43] was performed on the samples. For completeness,
samples of the population for varying temperature are shown in Figure 11.
In the aforementioned figure, one can see the effect of temperature on the
modelled quantity. Moreover, the physics of the population data-wise are
revealed. The transformation of the curves for different structures is shown.
It is worth noting that the described algorithms are expected to imitate a
human capability; observing the curves of Figure 11, one could infer the
values of the corresponding curve of a structure, for which only a few points
(even just one point in this case) are available. This human functionality
is about understanding the physics of the data or, in the current case, the
physics of the population.

The population-based set-up is defined, considering a small subset of struc-
tures as the training population, for which data are freely available. Such a
situation can be defined when one has extensively modelled a structure in
operation or when one is able to test a structure in a laboratory for various
excitations and environmental conditions. In contrast to other works on
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Figure 11: Principal components of samples of FRFs of members of the population. Points
belonging to the same structure for different temperature are shown with the same colour.
The colour difference refers to different structures of the population.

regression with meta-learning [36, 42, 44], where tasks are freely sampled
during training from a distribution and the models are trained essentially
based on an infinite number of available tasks, in the current work the
number of training tasks (structures) is considered to be small but data for
these structures are available for a large number of different input variables.
Using these data, neural network models are trained following the described
approaches. Then, the models are used to approximate the relationship
between the temperature and the FRF of new structures - the testing popu-
lation - for which only a few samples are available. The methods are then
compared to a mainstream machine-learning approach, that of applying a
Gaussian process (GP) [41] directly on the available data separately for every
structure of the testing population. For the GP, a zero mean value function
and a Gaussian kernel were selected. Different types of mean and kernel
functions were not tested, because they are considered reasonable choices
for a problem with a small amount of available data for which one has no
prior intuition. The hyperparameters of the kernel function were optimised
by maximising the likelihood of the model for the available data.

4.1. Application of MAML

The exact procedure followed to train neural networks with the MAML
method is similar to a train-validate-test approach of standard machine
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learning. In each case, a three-layer neural network is used, with one input
layer, a hidden layer and an output layer. The activation function of the layers
was a hyperbolic tangent (tanh) function for all layers. For N + 1 structures
in the training population, Algorithm 1 is used to train a neural network
based on the data of N structures. The data from the structure which is
left out and considered the validation structure, are used to optimise the
hyperparameters of the model; in the current case the size of the hidden layer
of the neural network. The sizes of the hidden layer considered were from
the set {10, 20..., 100}. For each hidden-layer size, five random initialisations
of the parameters of the network were considered and algorithm 1 was used
to train the network. After every epoch of the algorithm, the model was
adapted on the data of the validation structure; i.e. the model was trained
by applying backpropagation using the data of the validation structure.
The adapted model was tested on unseen-by-the-algorithm data from the
validation structure. The instance of the model that achieved the lowest loss
on the unseen data from the validation structure was considered the best
model and was then tested on the structures from the testing population,
whose number in all experiments was set equal to 200 structures. The whole
procedure was repeated 50 times because of the random selection of the
training population, which is expected to affect the performance of the model
on the unseen structures of the population.

The training was repeated for different number of structures in the training
population, as well as for different number of available samples for each
testing structure. The model, which was previously trained using MAML,
was adapted on samples coming from new testing structures and then the
normalised mean-squared error (NMSE) was calculated for 200 values of
input temperatures randomly sampled from the interval [20, 40]. The NMSE
of the performance of the algorithm is defined by,

NMSE =
100

Nσ2
y

N∑
i=1

(ŷi − yi)
2 (20)

where ŷi is the prediction of the model for the ith input sample, yi is the
corresponding observation, σy is the standard deviation of the values of the
observations y and N is the total number of samples. This NMSE is useful
as a metric since it is equal to 100% if the model predictions (ŷi) are set to
the mean value, i.e. ŷi = y; values lower than 100% reveal that the model
is indeed capturing correlations in the data. Experience with this NMSE
indicates that good models are obtained for values of less than 5%, with a
value of less than 1% for excellent models. The results presented here refer
to the average NMSE of the 50 repetitions of training and testing, as well as
to the standard deviation of the 50 population NMSEs.
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Figure 12: Average normalised mean-squared errors and corresponding error-bars for the
first problem, for a testing population of 200 structures and for 100 data samples for each
structure using a neural network trained via the MAML algorithm (left) and for a GP
(right). On the left, the different colours represent MAML-trained neural networks with
a training population of two (blue), three (orange), four (green), five (red), six (purple),
seven (brown), eight (pink) and nine (grey) structures.

The results for the three problems are presented in Figures 12, 13 and 14;
note that for the first and the third problems, the NMSE axis is shown on a
logarithmic scale. As a first observation, one can easily see that the algorithm
outperforms the GP approach in almost every case; this is to be expected,
since the algorithm is trained based on data from the population, while the
GP is not informed in any way by the population or by some prior physical
knowledge of the analyst. However, for higher numbers of available training
points, the GP is expected to achieve equal or lower NMSEs than the MAML
algorithm, especially given that the presented problems are single-input
single-output problems.

It can further be seen that the MAML algorithm functions as a traditional
machine-learning algorithm regarding the number of available training data.
The more available training structures, the lower the average error on the
testing data and the lower the standard deviation of the errors in the
population, indicating a more robust model. Small inconsistencies to these
tendencies might be because of the random selection of the training structures,
as well as the stochastic optimisation procedure of the neural-network models.
This observation further encourages the belief that using the discussed
algorithms may be a way to automatically extract exploitable knowledge
from the population and use it to boost the performance of models for
newly-presented structures. It is to the authors’ knowledge that a GP can be
informed by data from a population to boost its performance; however, such
approaches may be included in the grey-box modelling discipline [45, 40],
according to which, one imposes knowledge into the model; such knowledge
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Figure 13: Average normalised mean-squared errors and corresponding error-bars for the
second problem, for a testing population of 200 structures and for 100 data samples for
each structure using a neural network trained via the MAML algorithm (left) and for a GP
(right). On the left, the different colours represent MAML-trained neural networks with
a training population of two (blue), three (orange), four (green), five (red), six (purple),
seven (brown), eight (pink) and nine (grey) structures.
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Figure 14: Average normalised mean-squared errors and corresponding error-bars for the
third problem, for a testing population of 200 structures and for 100 data samples for each
structure using a neural network trained via the MAML algorithm (left) and for a GP
(right). On the left, the different colours represent MAML-trained neural networks with
a training population of two (blue), three (orange), four (green), five (red), six (purple),
seven (brown), eight (pink) and nine (grey) structures.
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Figure 15: Average normalised mean-square error history examples from the second
problem, for (a) five training structures and five available samples for the testing structure
and (b) nine training structures and seven available samples for the testing structure.

might also be acquired from a population of structures.

It is also worth examining the results even further; specifically the convergence
of the neural-network model, which was trained using MAML. As mentioned
in the original work, the model which is trained using MAML, is quite
sensitive to different tasks. In the current case, different tasks refer to
different structures. The average NMSE history for different sizes of the
training population and available samples for the structures of the testing
population are shown in Figure 15. The average NMSE refers to the 200
testing points of values of temperature uniformly sampled from the interval
[20, 40]. It is clear that as the number of structures in the training population
and the number of available samples for the testing structures increase, so
does the convergence rate towards a minimum. This proportionality indicates
that larger sizes of training populations allow the algorithm to learn better
the physics of the population. Another important aspect of the training
histories, is how stable they are. After some epochs, a minimum has been
achieved and, even though the model is trained for longer than that, the error
does not diverge significantly from the achieved minimum. The observed
stability in the NMSE training histories also encourages the belief of the
previous section, that using MAML, the trainable parameters of the model
are “trapped” on a manifold, where the solutions for the population exist. In
contrast to what is observed in the current figures, a model, whose trainable
parameters would be freely allowed to adapt, would potentially start to
overfit to the values of the training data and would not exhibit such a stable
training history regarding the error on the testing data.

4.2. Application of CNP

The same framework was followed to test the performance of a CNP model
on the population. Results are presented in a similar manner in Figures
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Figure 16: Average normalised mean-squared errors and corresponding error-bars for the
first problem, for a testing population of 200 structures and for 100 data samples for
each structure using a neural network trained via the CNP algorithm (left) and for a GP
(right). On the left, the different colours represent CNP-trained neural networks with a
training population of two (blue), three (orange), four (green), five (red), six (purple),
seven (brown), eight (pink) and nine (grey) structures.

16, 17 and 18. As in the case of applying MAML, the algorithm also
exhibits behaviour similar to traditional machine learning. As the number
of available training structures increases, the error almost monotonically
decreases. Similar to before, some inconsistencies are observed, which might
be caused by the random selection of the training populations. The same
behaviour is observed for the standard deviation of the error, which also
decreases as more training structures are available, rendering a more robust
model for the population.

The CNP model also appears to perform much better than the GP in the
case of problems one and three, which, as discussed, is expected. It is
also observed that for the second problem, the CNP approach performs
better than MAML when more training structures are available. The better
performance in such cases might be because of the different ways that the
two models are trained. The MAML approach is an attempt to find an
initialisation point for the trainable parameters of the neural network and
from there to quickly fit a model to the task-specific optimal parameters.
MAML is therefore an implicit way of identifying the task via the error
signals passed by the backpropagation process to the model. On the contrary,
CNP is optimised exclusively with a view to identifying the task from the
available data, inferring a task-descriptive vector and using this vector as a
feature to make predictions for new inputs. It appears that MAML, where
backpropagation is performed through the optimisation algorithm, is a more
complicated attempt to learn the physics of the population and, as a result,
the more direct approach of CNP in this case outperforms MAML.
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Figure 17: Average normalised mean-squared errors and corresponding error-bars for the
second problem, for a testing population of 200 structures and for 100 data samples for
each structure using a neural network trained via the CNP algorithm (left) and for a GP
(right). On the left, the different colours represent CNP-trained neural networks with a
training population of two (blue), three (orange), four (green), five (red), six (purple),
seven (brown), eight (pink) and nine (grey) structures.
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Figure 18: Average normalised mean-squared errors and corresponding error-bars for the
third problem, for a testing population of 200 structures and for 100 data samples for
each structure using a neural network trained via the CNP algorithm (left) and for a GP
(right). On the left, the different colours represent CNP-trained neural networks with a
training population of two (blue), three (orange), four (green), five (red), six (purple),
seven (brown), eight (pink) and nine (grey) structures.
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Figure 19: The mean of the predictions (orange curve) and confidence intervals of ±3
standard deviations of the predictions (shaded blue area) of a GP fitted to available data
from a testing structure (red star points) for the 1 Hz problem (left) and the 50 Hz problem
(right). The real underlying relationship is shown as the blue curve and the predictions of
the model as the orange curve.
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Figure 20: Example of fitting a neural network, trained according to the MAML algorithm
on nine training structures, to available data from a testing structure (red star points) for
the 1 Hz problem (left) and the 50 Hz problem (right). The real underlying relationship is
shown as the blue curve and the predictions of the model as the orange curve.
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Figure 21: Example of the performance of a CNP model, trained using data from nine
training structures. The algorithm uses data from testing structure (red star points) to
make predictions for the 1 Hz problem (left) and the 50 Hz problem (right). The real
underlying relationship is shown as the blue curve and the predictions of the model as the
orange curve.

To better understand why population-informed models outperform the tra-
ditional machine-learning approach, some examples of fitting these models
to a small subset of data from a testing structure are shown in Figures
19, 20 and 21. For the current examples, the population-informed models
are trained using a training population of nine structures. In the figures,
examples of the performance of the models for the first two problems are
presented. Observing the behaviour of the population-informed models away
from the available samples gives a clear indication that these models have
incorporated part of the physics of the structures. For CNP it is also clear
that with only one available sample from the testing structure, the model is
able to almost perfectly approximate the underlying relationship, although,
as discussed the first problem is quite a simple problem. The GP on the
other hand is not informed in any way from the population. As a result, its
predictions are not as efficient as the predictions of the other two models.

5. Conclusions and next steps

The current work aims at motivating the creation of data-driven models,
which are forced to respect the underlying physics of some population of
problems. The physics of the population are to be learnt via the use of
data from a population of structures. The desired result is inspired by the
functionality of physics-based models, which utilise parameters that describe
the characteristics of various structures. These parameters belong to a
predefined interval, in contrast to the trainable parameters of a data-driven
model, whose domain is the whole set of real numbers.

Two approaches are studied for the purpose of defining population-informed
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models. The first is based on forcing the trainable parameters of a neural
network model to lie on a manifold, where minima for modelling structures
of the population exist. The approach is implemented using a meta-learning
technique for training neural networks, the model-agnostic meta-learning
algorithm (MAML). The second approach is based on using a set of available
input-output observations from a structure to identify the structure for which
inference is to be made. The approach is implemented via the conditional
neural processes algorithm (CNP), which exploits a task-identification sub-
network to infer a task-descriptive vector, from a small subset of available
task-specific data, and use this vector as a feature in the main neural network
model to make predictions about input-variables of interest.

The two types of population-informed models are tested based on three
simulated datasets. The datasets comprise FRFs of simulated lumped-
mass structures as a function of the temperature of the environment of the
structures. The two first datasets refer to the prediction of the magnitude of
single spectral lines of the FRF of the lumped-mass systems and the third
problem is about inferring the whole FRF. The difference between the first
two problems is that for the first, a one-to-one relationship exists between
the structure (task) and the temperature, and the magnitude of the spectral
line, while for the second task overlapping between the task curves exists.

The algorithms in all cases are tested on a small population of available
structures, in contrast to other works on meta-learning where one had
unrestricted access to random tasks during training. Moreover, because the
selection of the training structures naturally affects the result, the training
and testing of the algorithms were performed several times and the average
NMSE and the standard deviation of the NMSEs were calculated. The
performance of the two algorithms was compared to a traditional machine-
learning method - a Gaussian process (GP) - which is suitable for cases of
modelling datasets with only a few available data.

The results reveal that both algorithms are able to exploit knowledge from the
population. The algorithms are able to perform better than the GP, which,
in the current work, is not informed by the population or prior knowledge of
the analysers. Both MAML and CNP exhibit low average population errors
for the second case study and very low average population errors for the
first and third problems, where the relationship between the temperature
and the structure, and the quantity of interest is a bijection. Moreover,
both algorithms seem to behave similarly to a traditional machine-learning
algorithm regarding the number of available training structures and the
average error across the testing population as well as the standard deviation
of these errors. It is clear that the more training structures one has, the more
accurate and robust the model is within the population. It is also worth
noting, that the current approach is a completely physics-blind approach, in
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the sense that one does not need to induce any kind of physical knowledge
in the algorithm for them to function properly. In future work, it would be
interesting to examine a combined approach, including some physics into the
procedure.

Although it is not the algorithms’ primary objective, they could potentially
be used to identify damaged structures. Including data from structures with
different levels of damage in the population, the algorithm could learn to
make inferences for such situations. Thus, with a few data from a structure,
one could infer its behaviour for a wider range of environmental or operational
conditions. Making such inferences, the comparison between the healthy
states and the testing states could be made more efficiently.

The algorithms are tested only on simulated data. However, the current
work aims at motivating the use of black-box models in a similar manner
to physics-based models. A major ability of physics-based models, is their
reusability. The models can be built for a specific structure and then slightly
modified to be used on another. To bridge the gap between the use of the
two types of models, the approach herein is to define neural network models
which are built in order to perform inference within a population. The two
presented methods appear to create models suitable for such applications.
Further validation of the methods on experimental data is needed; however,
the results are encouraging. It is also believed that such models may add
extra credibility to the use of data-driven models, because their behaviour
and their goal is better defined in terms of being models of a population,
rather than models that are only able to perform on a single task. Models
defined in the described ways could more easily be trusted, as they can
be validated for a set of structures of the population. Because they draw
information from a population, the models do not begin their learning from
complete ignorance of the underlying physics of the population, which renders
them as not completely physics-ignorant models and makes their behaviour
more trustworthy than traditional machine-learning methods.
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