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Abstract

Modelling of structures is an important tool for decision making regarding
infrastructure. In the absence of sufficient knowledge of the physical phe-
nomena that affect the structure, one can follow a data-driven approach to
model its behaviour, relying exclusively on data acquired from it. However, a
common problem of this approach is the scarcity of data or biased data. To
deal with these two problems, approaches have been considered to transfer
knowledge via machine-learning models from one domain to another. The
current work considers the case of population-based structural health monitor-
ing (PBSHM) of structures. Such an approach is motivated by the common
physics that dictate the behaviour of similar structures, which could offer an
opportunity to exploit information from a population to create more robust
and trustworthy models of data-poor structures of the same population.
More specifically, the approach followed here is that of symbolic regression
and the transfer is attempted between an extensively-monitored structure
and a data-poor structure for a regression application. The methodology is
applied in a prognosis problem of crack growth in metal plates and the results
reveal the potential of symbolic regression to perform knowledge transfer.

Keywords: Population-based structural health monitoring, machine learning,
transfer learning, symbolic regression.

1. Introduction

Structures play an important role in everyday life. They take part in almost
every activity and, as a result, maintaining their condition and ensuring their
safety is of high importance. To achieve high levels of safety for structures,
it is quite important to model them and/or monitor them. Modelling of5

structure has been an objective for researchers for many years. Traditional
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approaches have followed a physics-based path; i.e. the researchers use their
physical intuition to define mathematical models which explain the behaviour
of materials and structures and can make accurate predictions. For example,
the finite element method (FEM) [1], is a very common approach to model10

both existing and under-development structures. The modelling approach
is especially useful during the design of the structure, the testing of what-if
scenarios, and the optimisation of the structure.

Equivalently to using modelling techniques to establish the safety of under-
development structures, monitoring is important to ensure that existing15

structures are safe. The various tasks performed for monitoring structures and
maintaining their safety are part of the field of structural health monitoring
(SHM) [2]. The functionalities of SHM are summarised by Rytter’s hierarchy
[3] as,

1. Is there damage in the system (existence)?20

2. Where is the damage in the system (location)?

3. What kind of damage is present (type/classification)?

4. How severe is the damage (extent/severity)?

5. How much useful (safe) life remains (prognosis)?

The above hierarchy offers a convenient classification of the various projects25

that might be developed under the framework of SHM. It also provides
a hierarchy of the difficulty of the above tasks; as one ascends, the tasks
become, arguably, more difficult to perform.

The increasing difficulty of the tasks becomes evident by examining each
of the levels in the hierarchy, and considering the various ways that such30

problems can be dealt with. The first step, the acknowledgement of the
existence of damage is often translated into a novelty detection problem.
Approaches to deal with this issue vary, including simple definition of a
statistical novelty index and a corresponding threshold, which shall indicate
alarm states [4]. For the second and third levels, a distinction between35

physics-based and data-driven approaches may be made. Following the
physics-based approach, one seeks to exploit one’s understanding of damage
mechanisms and to define models which shall assist in finding the location
of damage or the type of damage. An example is found in [5], where the
physics of a crack in a structure are modelled via the XFEM method. For a40

data-driven approach, one would have to train a model according to data
acquired from the structure in order to perform the desired functionality [6].

The last two levels, which refer to damage as an evolving-in-time phenomenon,
are often considered the most difficult to deal with. The definition of
the severity of damage and its evolution in the future, implies extensive45

understanding of the damage mechanism in the case of a physics-based
approach (in [5] the size of the crack is inferred, so it could be considered a
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definition of the severity). However, such phenomena are difficult to model,
because that requires modelling at different levels of detail (microscopic and
macroscopic), and because damage evolution is an inherently random process50

[2]. Moreover, if a data-driven approach is followed, the models would be
called to extrapolate, i.e. make predictions outside their training domain,
which could affect their performance.

The current work is an attempt to deal with the problem of damage prognosis.
As mentioned, data scarcity is quite often an issue of such problems. As a55

potential solution to lack of data, the current approach follows a population-
based approach. Common approaches consider multiple structures; however,
the current work is an attempt to transfer knowledge from one structure,
which has been observed until failure, to another structure, for which the
damage evolution process has begun. To perform this transfer, symbolic60

regression [7] is employed, as an attempt at a robust function-transferring
approach. The layout of the paper is as follows. In Section 2, a brief
introduction is given about the population-based approach to structural
health monitoring. In section 3, a description of symbolic regression is
provided. In Section 4, a damage-prognosis experimental dataset is presented,65

as well as the results of applying the transfer of knowledge from one structure
to another using symbolic regression. Finally, in Section 5, the results and
future steps are discussed.

2. Population-based structural health monitoring

Data-driven approaches are powerful tools when one deals with a problem70

whose underlying physics are unknown or maybe even impossible to define [8].
However, such approaches are often accompanied by difficulties of different
types; the most common example is the scarcity of data. To apply a machine
learning algorithm and build an accurate model, one needs data. Different
volumes of data are required for different algorithms; for example, for neural75

networks and deep learning the need for data is imperative, while for other
methods, such as a Gaussian process (GP) [9], inference can be made with a
smaller amount of observed data. In any case, data should be available in
order to follow the data-driven approach of modelling a phenomenon.

Motivated by epidemiology [10], the discipline of population-based structural80

health monitoring (PBSHM) has been recently proposed [11] as an attempt
to introduce a population-based philosophy to the data-driven approaches
of structural dynamics, including also physics-based approaches, or even
combining the two. The approaches developed within the framework aim
at performing SHM in homogeneous or heterogeneous populations. The85

first category refers to structures that are quite similar, or even nominally
identical. Parts of structures which are manufactured similarly fall in this
category, e.g. the blades of a helicopter [12]. In this case, an approach
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which may be followed is that of defining a form [11]. A form is a model,
preferably a generative model, which defines the way that the structures90

within the population behave. The form may define the normal-condition
characteristics of the structures and may be used to perform novelty detection
in the population. The advantage of using such an approach is that there is
no need for data from every structure of the population in order to perform
inference.95

Another approach to population data-driven modelling may be the attempt
to transfer a model within a heterogeneous population. The use of transfer
learning [13] is quite common within the PBSHM domain, because the
two fields share a common goal, the transfer of knowledge from data-rich
tasks to data-scarce tasks. An application of knowledge transfer within100

a heterogeneous population is presented in [11], where a damage-classifier
model is transferred from one structure to another, achieving quite a high
level of prediction accuracy.

An interesting task of PBSHM is that of classifying the structures into
categories, with a view to identifying between which structures transfer of105

knowledge is feasible. In [11, 14], an algorithm for transforming structures
into irreducible elements (IEs) is presented. The abstract IE models are
constructed in order to encapsulate the information about the connectivity
of the structures and about the properties of the various structural elements.
After transforming the structures into IE models, various classification algo-110

rithms can be used to define clusters or communities of structures, within
which transfer of knowledge is more likely, because of their similarity.

The aim of the current work is slightly different to most of the aforementioned
approaches, where transfer is mainly attempted from an existing population
to a newly-considered structure. In the current work, the transfer from one115

structure to another shall be be considered. Such a transfer is also performed
in [11] but for a classification problem. The problem which is studied here is
the regression problem of the definition of the remaining useful lifetime.

3. Symbolic regression

The process of learning, and especially machine learning, is quite often120

focussed on an optimisation procedure. During the optimisation, one often
tries to minimise an error metric between the predictions of a model and
the actual observations of a system, thus fitting the model to explain the
system and make predictions about it. This optimisation procedure may be
performed in several ways. A common way to perform such a procedure is via125

gradient descent [15]. This approach requires the definition of a loss function,
which quantifies the error, and of the gradients of this loss function. In
many cases, such as neural networks [15], the derivatives can be calculated in
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closed form and the procedure is feasible. However, in many cases, one might
try to impose some properties on algorithms which may not be expressed in130

mathematical terms or may not be differentiable.

A case of such a model, whose loss function may not be differentiable is that of
symbolic regression [7]. The method of symbolic regression aims at creating
interpretable models given some data observations. The interpretability
comes from the fact that the models are created by combining various135

mathematical expressions from a pool of such potential expressions. The
motivation for symbolic regression is the equation discovery procedure which
one might follow to create a model for a specific phenomenon.

The algorithm of fitting symbolic expressions to data is a genetic algorithm. A
general framework of genetic algorithms includes a population of individuals, a140

fitness function, a mutation process and a crossover process. The individuals
are often the models which are fitted to the data. The fitness function
defines how well or how poorly each individual is fitted to the data, but also
how well it satisfies other properties induced by the analyst. The mutation
process is defined as random changes in the parameters of each individual of145

the population. These changes aim at a more thorough exploration of the
parameter space close to the current state of the population. Finally, the
crossover process combines the parameters of two (or more) individuals to
create a new individual. Such a process aims at better exploration of the
parameter space further away from the current state of the population.150

For the purpose of symbolic regression and equation discovery, the candidate
model-functions are encoded as graphs and the procedures of the genetic
algorithms are defined as graph operations. The exact procedures are exten-
sively described in [7]. The approach in the aforementioned work includes
modifications to the traditional genetic-algorithm framework which can be155

quite beneficial for the current application. A first modification is that the
parameters of the candidate functions are optimised using a gradient descent
procedure at every step of the genetic-algorithm optimisation. Performing
such optimisation assists in the exploitation of the parameter space, finding
the optimal values of the tunable parameters of the candidate functions and160

reducing the dependency on the mutation process. A second modification is
that the evolution algorithm is performed for separate complexities of the
model. The complexity is roughly defined as how deep the graph of each
function is and optimising at different complexity levels results in a pool
of potential solutions of different complexities, which can be considered as165

potential forms [11].

The motivation for using symbolic regression to transfer knowledge from one
structure to another comes from its robustness compared to other machine
learning algorithms. A candidate model coming from a pool of potential
models is a combination of continuous and smooth functions. Moreover,170
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because the model is initially fitted on data coming from one structure, it is
expected that the candidate models will enable the transferring of a model
with similar and stable behaviour for unseen data of the new structure. An
approach like this is also motivated by the way that a human might approach
the problem. A potential approach would be to seek to define a closed175

form function to model all the structures within the population and allow
some tunable parameters to fit the model to different structures. Similarly
symbolic regression as defined in [7] defines candidate models/forms and
allows some parameters to be tuned.

4. Application180

To test the performance of symbolic regression in damage prognosis, an
experimental setup is considered herein, as shown in Figure 1. The plates
are of aluminium and representative of a real helicopter fuselage; they are
submitted to cyclic loading with a sinusoidal load of 12Hz frequency and
with maximum amplitude 35kN. The damage type is a skin crack, which has185

been artificially initiated to start the damage evolution process. For more
information, the interested reader can refer to [16, 17].

Figure 1: The experimental setup used to acquire the data of the current application [16].

The experiments involved six metal plates and the lengths of the cracks
developed in the plates are shown in Figure 2 on the left as a function of
the loading cycles needed to achieve the specific crack length. From the190

aforementioned figure, it becomes clear that, although the metal plates are
considered identical, the evolution of the crack is quite different and different
values of crack length are achieved for quite different numbers of loading
cycles.
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Figure 2: The crack-growth paths of the six plates in their original form (left) and with
inverted axes (right), for the purposes of the current work. For reference, the colours of the
crack-growth curves corresponding to plate-numbers one to six is considered to be blue,
orange, green, red, purple, brown.

In reality, one may define an upper limit of the crack length, values above195

which could be considered too dangerous to operate the structure and repair
would be necessary. In the current work, this limit is considered to be 125mm.
Moreover, the relationship which is modelled herein is the number of cycles
as a function of the crack length. Inverting the variables in such a way,
as in Figure 2 on the right, shall be convenient for the current application.200

The reason is that the observations are now defined for every value of the
input variables, i.e. the crack length, given that all the plates reach the
aforementioned limit of 125mm. Moreover, because a closed-form function is
fitted to the data, curves in the form of Figure 2 on the left would need a
function which would have an asymptote to infinity.205

To test the efficiency of the algorithm, one of the crack-growth curves of
Figure 2 was considered and the symbolic regression model was fitted to it.
As mentioned, the symbolic regression algorithm as developed in [7] seeks for
solutions for different levels of complexity, which in the current case is defined
as the depth of the equation graph. The result is a set of potential forms of210

varying equation-graph depth. An example of two solutions is shown in Figure
3. In the specific example, the orange curve equation is N = 1.0221437

√
x

and the green curve equation is N = 1.9781963594752x− x2, where N is the
number of cycles and x is the crack length.

The resulting set of forms, is then considered as potential equations that215

would describe the behaviour of the other plates. To test the assumption,
two other plates from the available dataset are considered. The testing
plates were the ones corresponding to the green (third plate) and purple
curves (fifth plate) in Figure 2. This selection was made in an attempt
to transfer knowledge between a plate whose behaviour is slightly different220

to the training one (the third plate) and a plate whose behaviour is quite
different (fifth plate). Considering the parameters of the resulting set of
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Figure 3: Damage-evolution curve (blue) and two function results of fitting the symbolic
regression model to the data (orange and green curves).

equations of the symbolic regression algorithm as tunable, a simple gradient
decent algorithm was used to fit the equations to partial observations of
the damage-evolution curves. For the example equations of Figure 3, the225

parametric equations have the form N = c1 ∗
√
x and N = c2x− c3x

2, where
c1,2,3 are the tunable parameters. For the current work, two scenarios of
available samples from the damage evolution phenomenon were considered.
The first scenario comprises observations up to 40% of the total crack growth
and the second up to 60% of the total crack growth. In order to get a230

single prediction, the average value of the fitted equations was considered as
the prediction. The results for the two plates for the two scenarios of data
availability are shown in Figures 4 and 5.
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Figure 4: Predictions (orange curves) of fitting the set of equations of the symbolic
regression to partial observations (red stars) of the damage path of the third plate (blue
curve).
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Figure 5: Predictions (orange curves) of fitting the set of equations of the symbolic
regression to partial observations (red stars) of the damage path of the fifth plate (blue
curve).

It can be seen from the previous figures, the predictions are quite close to the
actual curve, especially for the total lifetime of the plates. More specifically,235

for the third plate, the predictions of the total lifetime are 337495 and 336773
loading cycles having available observations of 40% and 60% of the maximum
crack length respectively. The actual total lifetime is 312500 loading cycles,
which corresponds to errors of 24995 and 24273 respectively, overestimation
in both cases. To provide a normalised version of the errors, their values are240

divided by the squared standard deviation of the lifetimes of the six plates,
which yields errors of 24.45% and 23.06%. The respective errors for the fifth
plate are quite lower and equal to 1.99% and 0.87%.

The results reveal that for transferring knowledge from the first to the fifth
plate, the method works quite well, while for transferring from the first to245

the third there is a considerable error. The high error might be observed
because of a quite different underlying physical system of the third plate
compared to the first. Moreover, it can be observed that in all cases the
predictive functions are not monotonically increasing, which contradicts one’s
understanding of the crack growth mechanism. It is left for future work to250

modify the loss function of the symbolic regression algorithm in order to
yield results which are monotonically increasing.

5. Conclusions and next steps

In the current work, a symbolic-regression approach was presented as an
attempt to transfer knowledge between two structures in a regression problem255

within a PBSHM framework. The approach is motivated by the stability
and predictability of functions resulting from a symbolic regression algo-
rithm. Moreover, the application is motivated by the traditional approach
to model creating, where a person defines an analytical function to explain
the relationship between two or more variables. The method is applied on a260
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damage-prognosis problem, a common regression problem of SHM, and the
results are presented.

The algorithm was used as an attempt to transfer knowledge between an
aluminium plate, whose crack-growth path is fully available, to two other
plates, whose damage-growth paths are only partially observed. In both265

attempts of transferring knowledge, the plates are considered to belong to
the same population, thus they are considered to have similar underlying
physics.

The results reveal that, by fitting a symbolic-regression model to the fully-
observed damage path of one plate, a set of potential regression functions is270

acquired. Subsequently, the tunable parameters of these functions are fitted
to the partial observations of the crack-growth curves of the testing plates.
The results, in terms of the prediction of the total lifetime of the testing plate,
were in one case good and in the other case decent. However, it is observed
that the resulting functions do not satisfy the analyst’s understanding of275

the physics of the crack-growth problem (in this case the functions are not
monotonically increasing). In future work, a modification of the fitness
function of the symbolic regression algorithm could be considered to impose
such a restriction, aiming at better results. Another modification with a
view to better results could be the inclusion of bias terms in the equations.280

Moreover, the method may benefit if more than one structures are included
in the training set, attempting to inform further the algorithm about the
common physics of the population.
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