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MOTIVATION

▶ Scarcity of data

▶ Motivation from the functionality of
physics-based models

▶ Structures with common physics

▶ Available data from populations of structures

▶ Especially in prognosis, damage-evolution data
are rare
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POPULATION-BASED SHM

Population-based SHM:

▶ Motivated from healthcare practices

▶ Powerful transfer learning techniques

▶ Reduce the dependence on data

▶ Discovery of similar patterns in populations

▶ Often the only way to acquire damage-state
data
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POPULATION-BASED SHM

A simple crack-growth population example
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SYMBOLIC REGRESSION

Aims:

▶ Transfer learning for regression

▶ Attempt one-to-one transfer

▶ Imitate human inference methodology

▶ Discovery of common underlying functional
form

▶ Learn an underlying skeleton from a training
structure

▶ Fit the trainable parameters to new data from
testing structure
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SYMBOLIC REGRESSION

▶ Pool of candidate functions

▶ Genetic algorithm to create combinations of
the basic functions

▶ Python implementation PySR [1]

▶ Impose prior beliefs via the initial function pool

▶ Human-inference inductive bias of smoothness

▶ Learn from a training structure, test on a
testing structure
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CRACK-GROWTH APPLICATION EXAMPLE

▶ Six nominally identical aluminium
plates

▶ Cyclic loading

▶ Initialisation of a small crack

▶ Monitoring of the crack length as a
function of the loading cycles [2, 3]
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CRACK-GROWTH APPLICATION EXAMPLE

▶ Six nominally identical aluminium
plates

▶ Cyclic loading

▶ Initialisation of a small crack

▶ Monitoring of the crack length as a
function of the loading cycles [2, 3]

▶ Inversion of the input and output
variables

▶ Consider critical crack length of
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CRACK-GROWTH APPLICATION EXAMPLE

Training plate
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CRACK-GROWTH APPLICATION EXAMPLE

Fitted functions to the training data
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CRACK-GROWTH APPLICATION EXAMPLE

Results 1st testing structure
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CRACK-GROWTH APPLICATION EXAMPLE

Results 2nd testing structure
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CONCLUSIONS & FUTURE STEPS

▶ Promising results for one-to-one regression transfer learning

▶ Some artefacts which could be corrected imposing physical knowledge

▶ A many-to-one framework could improve the results

▶ A Bayesian fitting during testing could provide confidence intervals

▶ New deep-learning promising approaches for symbolic regression that scales could
lead to improved resutls
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